Skip to main content
Log in

Diagnostic yield of multi-gene panel for muscular dystrophies and other hereditary myopathies

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Genetic testing is being considered the first-step in the investigation of hereditary myopathies. However, the performance of the different testing approaches is little known. The aims of the present study were to evaluate the diagnostic yield of a next-generation sequencing panel comprising 39 genes as the first-tier test for genetic myopathies diagnosis and to characterize clinical and molecular findings of families from southern Brazil. Fifty-one consecutive index cases with clinical suspicion of genetic myopathies were recruited from October 2014 to March 2018 in a cross-sectional study. The overall diagnostic yield of the next-generation sequencing panel was 52.9%, increasing to 60.8% when including cases with candidate variants. Multi-gene panel solved the diagnosis of 12/25 (48%) probands with limb-girdle muscular dystrophies, of 7/14 (50%) with congenital muscular diseases, and of 7/10 (70%) with muscular dystrophy with prominent joint contractures. The most frequent diagnosis for limb-girdle muscular dystrophies were LGMD2A/LGMD-R1-calpain3-related and LGMD2B/LGMD-R2-dysferlin-related; for congenital muscular diseases, RYR1-related-disorders; and for muscular dystrophy with prominent joint contractures, Emery-Dreifuss-muscular-dystrophy-type-1 and COL6A1-related-disorders. In summary, the customized next-generation sequencing panel when applied in the initial investigation of genetic myopathies results in high diagnostic yield, likely reducing patient’s diagnostic odyssey and providing important information for genetic counseling and participation in disease-specific clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Walton JN (1954) On the classification and natural history of the myopathies. Trans Am Neurol Assoc 13:19–21

    CAS  PubMed  Google Scholar 

  2. Norwood FL, Harling C, Chinnery PF et al (2009) Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscleclinic population. Brain 132:3175–3186

    Article  PubMed  Google Scholar 

  3. Amburgey K, McNamara N, Bennet LR, McCormick ME, Acsadi G, Dowling JJ (2011) Prevalence of congenital myopathies in a representativepediatric United States population. Ann Neurol 70:662–665

    Article  PubMed  Google Scholar 

  4. Dimachkie MM, Barohn RJ (2014) Distal myopathies. Neurol Clin 32:817–842

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mah JK, Korngut L, Fiest KM, Dykeman J, Day LJ, Pringsheim T et al (2015) A systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci 43:163–177

    Article  Google Scholar 

  6. Cohen BH (2019) Mitochondrial and metabolic myopathies. Continuum (Minneap Minn) 25:1732–1766

    Google Scholar 

  7. Wicklund MP (2019) The limb-girdle muscular dystrophies. Continuum (Minneap Minn) 25:1599–1618

    Google Scholar 

  8. Butterfield RJ (2019) Congenital muscular dystrophy and congenital myopathy. Continuum (Minneap Minn) 25:1640–1661

    Google Scholar 

  9. Winckler PB, Da Silva AMS, Coimbra-Neto AR, Carvalho E, Cavalcanti EBU, Sobreira CFR, Marrone CD, Machado-Costa MC, Carvalho AAS, Feio RHF, Rodrigues CL, Gonçalves MVM, Tenório RB, Mendonça RH, Cotta A, Paim JFO, Costa e Silva C, de Aquino Cruz C, Bená MI, Betancur DFA, El Husny AS, de Souza ICN, Duarte RCB, Reed UC, Chaves MLF, Zanoteli E, França MC Jr, Saute JA (2019) Clinicogenetic lessons from 370 patients with autosomal recessive limb-girdle muscular dystrophy. Clin Genet 96:341–353

    Article  CAS  PubMed  Google Scholar 

  10. Mercuri E, Bönnemann CG, Muntoni F (2019) Muscular dystrophies. Lancet 394(10213):2025–2038

    Article  PubMed  Google Scholar 

  11. Jackson CE, Barohn RJ (2013) A pattern recognition approach to myopathy. Continuum (Minneap Minn) 19:1674–97

    Google Scholar 

  12. Pasnoor M, Dimachkie MM (2019) Approach to muscle and neuromuscular junction disorders. Continuum (Minneap Minn) 25:1536–63

    Google Scholar 

  13. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pillen S, Arts IMP, Zwarts MJ (2008) Muscle ultrasound in neuromuscular disorders. Muscle Nerve 37:679–693

    Article  PubMed  Google Scholar 

  15. Nigro V, Savarese M (2016) Next-generation sequencing approaches for the diagnosis of skeletal muscle disorders. Curr Opin Neurol 29:621–627

    Article  CAS  PubMed  Google Scholar 

  16. Kress W, Rost S, Kolokotronis K, Meng G, Pluta N, Müller-Reible C (2017) The genetic approach: next-generation sequencing-based diagnosis of congenital and infantile myopathies/muscle dystrophies. Neuropediatrics 48:242–246

    Article  CAS  PubMed  Google Scholar 

  17. Magri F, Nigro V, Angelini C, Mongini T, Mora M, Moroni I et al (2017) The Italian LGMD registry: relative frequency, clinical features, and differential diagnosis. Muscle Nerve 55:55–68

    Article  CAS  PubMed  Google Scholar 

  18. Rubegni A, Malandrini A, Dosi C, Astrea G, Baldacci J, Battisti C, Bertocci G, Donati MA, Dotti MT, Federico A, Giannini F, Grosso S, Guerrini R, Lenzi S, Maioli MA, Melani F, Mercuri E, Sacchini M, Salvatore S, Siciliano G, Tolomeo D, Tonin P, Volpi N, Santorelli FM, Cassandrini D (2019) Next-generation sequencing approach to hyperCKemia: a 2-year cohort study. Neurol Genet 16(5):e352

    Article  CAS  Google Scholar 

  19. Chakravorty S, Nallamilli BRR, Khadilkar SV, Singla MB, Bhutada A, Dastur R, Gaitonde PS, Rufibach LE, Gloster L, Hegde M (2020) Clinical and genomic evaluation of 207 genetic myopathies in the Indian subcontinent. Front Neurol 11:559327

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, Massouras A (2019) VarSome: the human genomic variant search engine. Bioinformatics 35:1978–1980

    Article  CAS  PubMed  Google Scholar 

  21. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–24

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, Harrison SM, ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI) (2018) Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat 39:1517–1524

    Article  PubMed  PubMed Central  Google Scholar 

  24. Biesecker LG, Harrison SM, ClinGen Sequence Variant Interpretation Working Group (2018) The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 20:1687–1688

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, Kanavy DM, Luo X, McNulty SM, Starita LM, Tavtigian SV, Wright MW, Harrison SM, Biesecker LG, Berg JS, Clinical Genome Resource Sequence Variant Interpretation Working Group (2019) Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11(5):863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886–D894

    Article  CAS  PubMed  Google Scholar 

  29. Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper DN, Bernstein JA, Bejerano G (2016) M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 48:1581–1586

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362

    Article  CAS  PubMed  Google Scholar 

  31. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, Cannon-Albright LA, Teerlink CC, Stanford JL, Isaacs WB, Xu J, Cooney KA, Lange EM, Schleutker J, Carpten JD, Powell IJ, Cussenot O, Cancel-Tassin G, Giles GG, MacInnis RJ, Maier C, Hsieh CL, Wiklund F, Catalona WJ, Foulkes WD, Mandal D, Eeles RA, Kote-Jarai Z, Bustamante CD, Schaid DJ, Hastie T, Ostrander EA, Bailey-Wilson JE, Radivojac P, Thibodeau SN, Whittemore AS, Sieh W (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cooper GM, Stone EA, Asimenos G et al (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15:901–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database Consortium, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fowler A, Mahamdallie S, Ruark E, Seal S, Ramsay E, Clarke M, Uddin I, Wylie H, Strydom A, Lunter G, Rahman N (2016) Accurate clinical detection of exon copy number variants in a targeted NGS panel using DECoN. Wellcome Open Res 1:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savarese M, Di Fruscio G, Torella A, Fiorillo C, Magri F, Fanin M, Ruggiero L, Ricci G, Astrea G, Passamano L, Ruggieri A, Ronchi D, Tasca G, D’Amico A, Janssens S, Farina O, Mutarelli M, Marwah VS, Garofalo A, Giugliano T, Sampaolo S, Del Vecchio BF, Esposito G, Piluso G, D’Ambrosio P, Petillo R, Musumeci O, Rodolico C, Messina S, Evilä A, Hackman P, Filosto M, Di Iorio G, Siciliano G, Mora M, Maggi L, Minetti C, Sacconi S, Santoro L, Claes K, Vercelli L, Mongini T, Ricci E, Gualandi F, Tupler R, De Bleecker J, Udd B, Toscano A, Moggio M, Pegoraro E, Bertini E, Mercuri E, Angelini C, Santorelli FM, Politano L, Bruno C, Comi GP, Nigro V (2016) The genetic basis of undiagnosed muscular dystrophies and myopathies: Results from 504 patients. Neurology 87:71–76

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez-Quereda L, Rodriguez MJ, Diaz-Manera J, Alonso-Perez J, Gallardo E, Nascimento A, Ortez C, Natera-de Benito D, Olive M, Gonzalez-Mera L, Munain AL, Zulaica M, Poza JJ, Jerico I, Torne L, Riera P, Milisenda J, Sanchez A, Garrabou G, Llano I, Madruga-Garrido M, Gallano P (2020) Targeted next-generation sequencing in a large cohort of genetically undiagnosed patients with neuromuscular disorders in Spain. Genes (Basel) 11:539

    Article  CAS  Google Scholar 

  39. Winder TL, Tan CA, Klemm S, White H, Westbrook JM, Wang JZ, Entezam A, Truty R, Nussbaum RL, McNally EM, Aradhya S (2020) Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. Neurol Genet 6:e412

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dardas Z, Swedan S, Al-Sheikh Qassem A, Azab B (2020) The impact of exome sequencing on the diagnostic yield of muscular dystrophies in consanguineous families. Eur J Med Genet 63:103845

    Article  PubMed  Google Scholar 

  41. Magri F, Nigro V, Angelini C, Mongini T, Mora M, Moroni I, Toscano A, D’angelo MG, Tomelleri G, Siciliano G, Ricci G, Bruno C, Corti S, Musumeci O, Tasca G, Ricci E, Monforte M, Sciacco M, Fiorillo C, Gandossini S, Minetti C, Morandi L, Savarese M, Fruscio GD, Semplicini C, Pegoraro E, Govoni A, Brusa R, Del Bo R, Ronchi D, Moggio M, Bresolin N, Comi GP (2017) The Italian limb girdle muscular dystrophy registry: relative frequency, clinical features, and differential diagnosis. Muscle Nerve 55(1):55–68. https://doi.org/10.1002/mus.25192

    Article  CAS  PubMed  Google Scholar 

  42. Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, da Silva C, Beadling R, Alexander JJ, Askree SH, Whitt Z, Bean L, Collins C, Khadilkar S, Gaitonde P, Dastur R, Wicklund M, Mozaffar T, Harms M, Rufibach L, Mittal P, Hegde M (2018) Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 5:1574–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Passos-Bueno MR, Vainzof M, Moreira ES, Zatz M (1999) Seven autosomal recessive limb-girdle muscular dystrophies in the Brazilian population: from LGMD2A to LGMD2G. Am J Med Genet 82:392–398

    Article  CAS  PubMed  Google Scholar 

  44. Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, Needham M, Liang C, Waddell LB, Nicholson G, O’Grady G, Kaur S, Ong R, Davis M, Sue CM, Laing NG, North KN, MacArthur DG, Clarke NF (2015) Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol 72:1424–1432

    Article  PubMed  Google Scholar 

  45. Schofield D, Alam K, Douglas L, Shrestha R, MacArthur DG, Davis M, Laing NG, Clarke NF, Burns J, Cooper ST, North KN, Sandaradura SA, O’Grady GL (2017) Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. NPJ Genom Med 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  46. François-Heude MC, Walther-Louvier U, Espil-Taris C, Beze-Beyrie P, Rivier F, Baudou E, Uro-Coste E, Rigau V, Martin Negrier ML, Rendu J, Morales RJ, Pégeot H, Thèze C, Lacourt D, Coville AC, Cossée M, Cances C (2021) Evaluating next-generation sequencing in neuromuscular diseases with neonatal respiratory distress. Eur J Paediatr Neurol 31:78–87

    Article  PubMed  Google Scholar 

  47. Wang Y, Peng W, Guo HY, Li H, Tian J, Shi YJ, Yang X, Yang Y, Zhang WQ, Liu X, Liu GN, Deng T, Sun YM, Xing WL, Cheng J, Feng ZC (2016) Next-generation sequencing-based molecular diagnosis of neonatal hypotonia in Chinese population. Sci Rep 6:29088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heller SA, Shih R, Kalra R, Kang PB (2020) Emery-Dreifuss muscular dystrophy. Muscle Nerve 61:436–448

    Article  PubMed  Google Scholar 

  49. Zanoteli E, Soares PS, Silva AMSD, Camelo CG, Fonseca ATQSM, Albuquerque MAV, Moreno CAM, Lopes Abath Neto O, Novo Filho GM, Kulikowski LD, Reed UC (2020) Clinical features of collagen VI-related dystrophies: a large Brazilian cohort. Clin Neurol Neurosurg 192:105734

    Article  PubMed  Google Scholar 

  50. Fan Y, Liu A, Wei C, Yang H, Chang X, Wang S, Yuan Y, Bonnemann C, Wu Q, Wu X, Xiong H (2018) Genetic and clinical findings in a Chinese cohort of patients with collagen VI-related myopathies. Clin Genet 93:1159–1171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients and families for their participation in this study and to the professionals who attended these individuals but were not directly involved in this research project.

Funding

The study was funded by the Fundo de Incentivo à Pesquisa e Eventos-HCPA (Grant Number: 17–0340) and by unrestricted research grant from PTC Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Alex Morales Saute.

Ethics declarations

Ethical approval

The study was approved by the Ethics in Research Committee of our institution (GPPG-HCPA/17–0340).

Informed consent

Informed written consent was obtained from all individuals’/guardians’ prior participation.

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10072_2022_5934_MOESM1_ESM.xlsx

Supplementary file1 Supplemental Table 1 Clinical, genetic, neurophysiological and neuropathological description of subjects. AA, amino acid; AD, autosomal dominant; AO, age at onset; AR, autosomal recessive; AWA, age at walking aid dependency; AWC, age at wheelchair dependency; CMD; congenital muscular diseases; DD, disease duration; DM, distal myopathy; DMD, Duchenne muscular dystrophy; EMG; electromyography; F, female; Fam, family; GMWS, modified Gardner-Medwin-Walton scale. IHC, immunohistochemistry; LGMD; limb-girdle muscular dystrophy; M, male; Max, maximum; MDJC, muscular dystrophy with prominent joint contractures; MM, metabolic myopathy; MRI, magnetic resonance imaging; NA, not available; SMA, spinal muscular atrophy; UA, ultrastructural analysis; *diagnosed based on clinical findings and family molecular diagnosis.# Not detected by the next-generation sequencing panel due to low coverage and detected by whole exome sequencing (XLSX 24 KB)

Supplementary file2 (PDF 120 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winckler, P.B., Chwal, B.C., Dos Santos, M.A.R. et al. Diagnostic yield of multi-gene panel for muscular dystrophies and other hereditary myopathies. Neurol Sci 43, 4473–4481 (2022). https://doi.org/10.1007/s10072-022-05934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05934-y

Keywords

Navigation