Skip to main content
Log in

Association of gender and age at onset with glucocerebrosidase associated Parkinson’s disease: a systematic review and meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Glucocerebrosidase (GBA) gene has been proved to be a risk factor for the development of Parkinson’s disease (PD). However, the gender effect in the prevalence of GBA-associated PD (GBA-PD) is still controversial. And there is no conclusion whether the age at onset (AAO) of PD is different between carriers and non-carriers of GBA. To clarify the association between gender and AAO in GBA-PD, we conducted a systematic review and meta-analysis. PubMed, Web of Science, and Embase were retrieved to obtain potentially related studies. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association between gender and GBA-PD. And the weighted mean difference (WMD) with 95% CIs was employed to assess the difference of AAO between carriers and non-carriers of GBA. A total of twenty-eight studies involving 16,488 PD patients were included in this meta-analysis. The results showed the prevalence of female patients was higher in GBA-PD [OR: 1.19, (95% CI, 1.07–1.32), P = 0.001]. Meanwhile, GBA carriers had younger age at PD onset than GBA non-carriers [WMD: 2.87, (95% CI, 2.48–3.27), P < 0.001]. Results of subgroup analysis showed the prevalence of women in GBA-PD was higher than men in North American and European PD patients, while the gender difference was not significant in other areas around the world, suggesting an ethnic specificity of gender effect for GBA-PD. Our results indicate the higher female prevalence with ethnic specificity and younger AAO of GBA carriers in GBA-PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the included studies have been published on databases of PubMed, Embase, and Web of Science.

Code availability

STATA 14 SE (Stata Corp, College Station, TX, USA).

References

  1. Riboldi GM, Di Fonzo AB (2019) GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells 8(4). https://doi.org/10.3390/cells8040364

  2. Przedborski S (2017) The two-century journey of Parkinson disease research. Nat Rev Neurosci 18(4):251–259. https://doi.org/10.1038/nrn.2017.25

    Article  CAS  PubMed  Google Scholar 

  3. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5(1):75–86. https://doi.org/10.1016/s1474-4422(05)70285-4

    Article  PubMed  Google Scholar 

  4. Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85. https://doi.org/10.1016/j.arr.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326. https://doi.org/10.1111/ane.12563

    Article  CAS  PubMed  Google Scholar 

  6. Barkhuizen M, Anderson DG, Grobler AF (2016) Advances in GBA-associated Parkinson’s disease--pathology, presentation and therapies. Neurochem Int 93:6–25. https://doi.org/10.1016/j.neuint.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai E, Reches A, Bembi B, Zimran A (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. Q J Med 89:691–694

    Article  CAS  Google Scholar 

  8. Schapira AH (2015) Glucocerebrosidase and Parkinson disease: recent advances. Mol Cell Neurosci 66(Pt A):37–42. https://doi.org/10.1016/j.mcn.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adler CH, Beach TG, Shill HA, Caviness JN, Driver-Dunckley E, Sabbagh MN, Patel A, Sue LI, Serrano G, Jacobson SA, Davis K, Belden CM, Dugger BN, Paciga SA, Winslow AR, Hirst WD, Hentz JG (2017) GBA mutations in Parkinson disease: earlier death but similar neuropathological features. Eur J Neurol 24(11):1363–1368. https://doi.org/10.1111/ene.13395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillies GE, Pienaar IS, Vohra S, Qamhawi Z (2014) Sex differences in Parkinson’s disease. Front Neuroendocrinol 35(3):370–384. https://doi.org/10.1016/j.yfrne.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan E-K, Tong J, Fook-Chong S, Yih Y, Wong M-C, Pavanni R, Zhao Y (2007) Glucocerebrosidase mutations and risk of Parkinson disease in Chinese patients. Arch Neurol 64:1056–1058

    Article  PubMed  Google Scholar 

  12. Simuni T, Brumm MC, Uribe L, Caspell-Garcia C, Coffey CS, Siderowf A, Alcalay RN, Trojanowski JQ, Shaw LM, Seibyl J, Singleton A, Toga AW, Galasko D, Foroud T, Nudelman K, Tosun-Turgut D, Poston K, Weintraub D, Mollenhauer B, Tanner CM, Kieburtz K, Chahine LM, Reimer A, Hutten S, Bressman S, Marek K, Parkinson’s Progression Markers Initiative I (2020) Clinical and dopamine transporter imaging characteristics of leucine-rich repeat kinase 2 (LRRK2) and glucosylceramidase beta (GBA) Parkinson’s disease participants in the Parkinson’s progression markers initiative: a cross-sectional study. Mov Disord. https://doi.org/10.1002/mds.27989

  13. Lesage S, Anheim M, Condroyer C, Pollak P, Durif F, Dupuits C, Viallet F, Lohmann E, Corvol JC, Honore A, Rivaud S, Vidailhet M, Durr A, Brice A, French Parkinson’s Disease Genetics Study G (2011) Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum Mol Genet 20(1):202–210. https://doi.org/10.1093/hmg/ddq454

    Article  CAS  PubMed  Google Scholar 

  14. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  16. Chahine LM, Qiang J, Ashbridge E, Minger J, Yearout D, Horn S, Colcher A, Hurtig HI, Lee VM, Van Deerlin VM, Leverenz JB, Siderowf AD, Trojanowski JQ, Zabetian CP, Chen-Plotkin A (2013) Clinical and biochemical differences in patients having Parkinson disease with vs without GBA mutations. JAMA Neurol 70(7):852–858. https://doi.org/10.1001/jamaneurol.2013.1274

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choi JM, Kim WC, Lyoo CH, Kang SY, Lee PH, Baik JS, Koh SB, Ma HI, Sohn YH, Lee MS, Kim YJ (2012) Association of mutations in the glucocerebrosidase gene with Parkinson disease in a Korean population. Neurosci Lett 514(1):12–15. https://doi.org/10.1016/j.neulet.2012.02.035

    Article  CAS  PubMed  Google Scholar 

  18. Cilia R, Tunesi S, Marotta G, Cereda E, Siri C, Tesei S, Zecchinelli AL, Canesi M, Mariani CB, Meucci N, Sacilotto G, Zini M, Barichella M, Magnani C, Duga S, Asselta R, Solda G, Seresini A, Seia M, Pezzoli G, Goldwurm S (2016) Survival and dementia in GBA-associated Parkinson’s disease: the mutation matters. Ann Neurol 80(5):662–673. https://doi.org/10.1002/ana.24777

    Article  CAS  PubMed  Google Scholar 

  19. Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, Quinn JF, Chung KA, Peterson-Hiller AL, Rosenthal LS, Dawson TM, Albert MS, Goldman JG, Stebbins GT, Bernard B, Wszolek ZK, Ross OA, Dickson DW, Eidelberg D, Mattis PJ, Niethammer M, Yearout D, Hu SC, Cholerton BA, Smith M, Mata IF, Montine TJ, Edwards KL, Zabetian CP (2016) Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 73(10):1217–1224. https://doi.org/10.1001/jamaneurol.2016.2245

    Article  PubMed  PubMed Central  Google Scholar 

  20. den Heijer JM, Cullen VC, Quadri M, Schmitz A, Hilt DC, Lansbury P, Berendse HW, van de Berg WDJ, de Bie RMA, Boertien JM, Boon AJW, Contarino MF, van Hilten JJ, Hoff JI, van Mierlo T, Munts AG, van der Plas AA, Ponsen MM, Baas F, Majoor-Krakauer D, Bonifati V, van Laar T, Groeneveld GJ (2020) A large-scale full GBA1 gene screening in Parkinson’s disease in the Netherlands. Mov Disord 35(9):1667–1674. https://doi.org/10.1002/mds.28112

    Article  CAS  Google Scholar 

  21. Gera A, O’Keefe JA, Ouyang B, Liu Y, Ruehl S, Buder M, Joyce J, Purcell N, Pal G (2020) Gait asymmetry in glucocerebrosidase mutation carriers with Parkinson’s disease. PLoS One 15(1):e0226494. https://doi.org/10.1371/journal.pone.0226494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Graham OEE, Pitcher TL, Liau Y, Miller AL, Dalrymple-Alford JC, Anderson TJ, Kennedy MA (2020) Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson’s disease cohort. Parkinsonism Relat Disord 70:36–41. https://doi.org/10.1016/j.parkreldis.2019.11.022

    Article  CAS  PubMed  Google Scholar 

  23. Guedes LC, Chan RB, Gomes MA, Conceicao VA, Machado RB, Soares T, Xu Y, Gaspar P, Carrico JA, Alcalay RN, Ferreira JJ, Outeiro TF, Miltenberger-Miltenyi G (2017) Serum lipid alterations in GBA-associated Parkinson’s disease. Parkinsonism Relat Disord 44:58–65. https://doi.org/10.1016/j.parkreldis.2017.08.026

    Article  PubMed  Google Scholar 

  24. Han F, Grimes DA, Li F, Wang T, Yu Z, Song N, Wu S, Racacho L, Bulman DE (2016) Mutations in the glucocerebrosidase gene are common in patients with Parkinson’s disease from Eastern Canada. Int J Neurosci 126(5):415–421. https://doi.org/10.3109/00207454.2015.1023436

    Article  CAS  PubMed  Google Scholar 

  25. Kumar KR, Ramirez A, Gobel A, Kresojevic N, Svetel M, Lohmann K, Sue CM, Rolfs A, Mazzulli JR, Alcalay RN, Krainc D, Klein C, Kostic V, Grunewald A (2013) Glucocerebrosidase mutations in a Serbian Parkinson’s disease population. Eur J Neurol 20(2):402–405. https://doi.org/10.1111/j.1468-1331.2012.03817.x

    Article  CAS  PubMed  Google Scholar 

  26. Lerche S, Wurster I, Roeben B, Zimmermann M, Riebenbauer B, Deuschle C, Hauser AK, Schulte C, Berg D, Maetzler W, Waniek K, Lachmann I, Liepelt-Scarfone I, Gasser T, Brockmann K (2020) Parkinson’s disease: glucocerebrosidase 1 mutation severity is associated with CSF alpha-synuclein profiles. Mov Disord 35(3):495–499. https://doi.org/10.1002/mds.27884

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, Duan L, Chen C, Zhou D, He L, Peng R (2020) Whole-exome sequencing in early-onset Parkinson’s disease among ethnic Chinese. Neurobiol Aging 1:e1–e7. https://doi.org/10.1016/j.neurobiolaging.2019.12.023

    Article  CAS  Google Scholar 

  28. Lin CH, Chen PL, Tai CH, Lin HI, Chen CS, Chen ML, Wu RM (2019) A clinical and genetic study of early-onset and familial parkinsonism in taiwan: an integrated approach combining gene dosage analysis and next-generation sequencing. Mov Disord 34(4):506–515. https://doi.org/10.1002/mds.27633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lunde KA, Chung J, Dalen I, Pedersen KF, Linder J, Domellof ME, Elgh E, Macleod AD, Tzoulis C, Larsen JP, Tysnes OB, Forsgren L, Counsell CE, Alves G, Maple-Grodem J (2018) Association of glucocerebrosidase polymorphisms and mutations with dementia in incident Parkinson’s disease. Alzheimers Dement 14(10):1293–1301. https://doi.org/10.1016/j.jalz.2018.04.006

    Article  PubMed  Google Scholar 

  30. Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH, Li A, Holton J, Guerreiro R, Paudel R, Segarane B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood NW (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132(Pt 7):1783–1794. https://doi.org/10.1093/brain/awp044

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oeda T, Umemura A, Mori Y, Tomita S, Kohsaka M, Park K, Inoue K, Fujimura H, Hasegawa H, Sugiyama H, Sawada H (2015) Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson’s disease. Neurobiol Aging 36(12):3306–3313. https://doi.org/10.1016/j.neurobiolaging.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  32. Olszewska DA, McCarthy A, Soto-Beasley AI, Walton RL, Magennis B, McLaughlin RL, Hardiman O, Ross OA, Lynch T (2020) Association between glucocerebrosidase mutations and Parkinson’s disease in Ireland. Front Neurol 11:527. https://doi.org/10.3389/fneur.2020.00527

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pchelina S, Baydakova G, Nikolaev M, Senkevich K, Emelyanov A, Kopytova A, Miliukhina I, Yakimovskii A, Timofeeva A, Berkovich O, Fedotova E, Illarioshkin S, Zakharova E (2018) Blood lysosphingolipids accumulation in patients with Parkinson’s disease with glucocerebrosidase 1 mutations. Mov Disord 33(8):1325–1330. https://doi.org/10.1002/mds.27393

    Article  CAS  PubMed  Google Scholar 

  34. Petrucci S, Ginevrino M, Trezzi I, Monfrini E, Ricciardi L, Albanese A, Avenali M, Barone P, Bentivoglio AR, Bonifati V, Bove F, Bonanni L, Brusa L, Cereda C, Cossu G, Criscuolo C, Dati G, De Rosa A, Eleopra R, Fabbrini G, Fadda L, Garbellini M, Minafra B, Onofrj M, Pacchetti C, Palmieri I, Pellecchia MT, Petracca M, Picillo M, Pisani A, Vallelunga A, Zangaglia R, Di Fonzo A, Morgante F, Valente EM, Group I-G-PS (2020) GBA-related Parkinson’s disease: dissection of genotype-phenotype correlates in a large Italian cohort. Mov Disord 35(11):2106–2111. https://doi.org/10.1002/mds.28195

    Article  CAS  PubMed  Google Scholar 

  35. Seto-Salvia N, Pagonabarraga J, Houlden H, Pascual-Sedano B, Dols-Icardo O, Tucci A, Paisan-Ruiz C, Campolongo A, Anton-Aguirre S, Martin I, Munoz L, Bufill E, Vilageliu L, Grinberg D, Cozar M, Blesa R, Lleo A, Hardy J, Kulisevsky J, Clarimon J (2012) Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course. Mov Disord 27(3):393–399. https://doi.org/10.1002/mds.24045

    Article  CAS  PubMed  Google Scholar 

  36. Thaler A, Kozlovski T, Gurevich T, Bar-Shira A, Gana-Weisz M, Orr-Urtreger A, Giladi N, Mirelman A (2018) Survival rates among Parkinson’s disease patients who carry mutations in the LRRK2 and GBA genes. Mov Disord 33(10):1656–1660. https://doi.org/10.1002/mds.27490

    Article  CAS  PubMed  Google Scholar 

  37. Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T, Duran R, Mencacci NE, Sawcer SJ, Barker RA (2013) Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain 136(Pt 2):392–399. https://doi.org/10.1093/brain/aws318

    Article  PubMed  Google Scholar 

  38. Wu YR, Chen CM, Chao CY, Ro LS, Lyu RK, Chang KH, Lee-Chen GJ (2007) Glucocerebrosidase gene mutation is a risk factor for early onset of Parkinson disease among Taiwanese. J Neurol Neurosurg Psychiatry 78(9):977–979. https://doi.org/10.1136/jnnp.2006.105940

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yahalom G, Greenbaum L, Israeli-Korn S, Fay-Karmon T, Livneh V, Ruskey JA, Ronciere L, Alam A, Gan-Or Z, Hassin-Baer S (2019) Carriers of both GBA and LRRK2 mutations, compared to carriers of either, in Parkinson’s disease: risk estimates and genotype-phenotype correlations. Parkinsonism Relat Disord 62:179–184. https://doi.org/10.1016/j.parkreldis.2018.12.014

    Article  PubMed  Google Scholar 

  40. Yu Z, Wang T, Xu J, Wang W, Wang G, Chen C, Zheng L, Pan L, Gong D, Li X, Qu H, Li F, Zhang B, Le W, Han F (2015) Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J Hum Genet 60(2):85–90. https://doi.org/10.1038/jhg.2014.110

    Article  CAS  PubMed  Google Scholar 

  41. Ziegler SG, Eblan MJ, Gutti U, Hruska KS, Stubblefield BK, Goker-Alpan O, LaMarca ME, Sidransky E (2007) Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 91(2):195–200. https://doi.org/10.1016/j.ymgme.2007.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galvagnion C (2017) The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson’s disease. J Parkinsons Dis 7(3):433–450. https://doi.org/10.3233/JPD-171103

    Article  CAS  PubMed  Google Scholar 

  43. Santos-Garcia D, de Deus-Fonticoba T, Suarez Castro E, Diaz AMA, Feal-Painceiras MJ, Paz-Gonzalez JM, Garcia-Sancho C, Jesus S, Mir P, Planellas L, Garcia-Caldentey J, Caballol N, Legarda I, Hernandez-Vara J, Gonzalez-Aramburu I, Avila-Rivera MA, Catalan MJ, Nogueira V, Alvarez-Sauco M, Vela L, Escalante S, Cubo E, Sanchez-Alonso P, Alonso-Losada MG, Lopez-Ariztegui N, Martinez-Martin P, Group CS (2020) The impact of freezing of gait on functional dependency in Parkinson’s disease with regard to motor phenotype. Neurol Sci 41(10):2883–2892. https://doi.org/10.1007/s10072-020-04404-7

    Article  PubMed  Google Scholar 

  44. Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Vekrelis K, Kapaki E (2019) Plasma alpha-synuclein levels in patients with Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 40(5):929–938. https://doi.org/10.1007/s10072-019-03738-1

    Article  PubMed  Google Scholar 

  45. Jurado-Coronel JC, Cabezas R, Avila Rodriguez MF, Echeverria V, Garcia-Segura LM, Barreto GE (2018) Sex differences in Parkinson’s disease: features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 50:18–30. https://doi.org/10.1016/j.yfrne.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  46. Aflaki E, Westbroek W, Sidransky E (2017) The complicated relationship between Gaucher disease and Parkinsonism: insights from a rare disease. Neuron 93(4):737–746. https://doi.org/10.1016/j.neuron.2017.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Shu L, Zhou X, Pan H, Xu Q, Guo J, Tang B, Sun Q (2018) A meta-analysis of GBA-related clinical symptoms in Parkinson’s disease. Parkinsons Dis 2018:3136415. https://doi.org/10.1155/2018/3136415

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all the participants for their helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Qinghua Li and Yajun Jing. The first draft of the manuscript was written by Qinghua Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng Sun.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Jing, Y., Lun, P. et al. Association of gender and age at onset with glucocerebrosidase associated Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 42, 2261–2271 (2021). https://doi.org/10.1007/s10072-021-05230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05230-1

Keywords

Navigation