Skip to main content
Log in

Reduced serum SIRT1 levels in patients with Parkinson’s disease: a cross-sectional study in China

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Parkinson’s disease (PD) is a movement disorder lacking of validated biomarkers. Experimental studies support the potential value of silent information regulator 1 (SIRT1) in neurodegeneration including PD. We aim to detect the serum levels of SIRT1 in PD patients in order to assess its value as a potential biomarker of PD.

Methods

Fifty-eight PD patients and 91 healthy controls were included. Serum SIRT1 was determined by enzyme-linked immunosorbent assay (ELISA) and compared between controls and PD patients. Spearman correlation coefficient was analyzed to study the relationship between serum SIRT1 and clinical parameters in PD patients. Receiver operating characteristic (ROC) analysis was conducted to assess the diagnostic value of serum SIRT1 in PD identification.

Results

Serum SIRT1 was significantly reduced in PD patients compared with controls. According to the ROC curve, the optimal cut-off point was 0.47 ng/ml with the sensitivity of 71% and specificity of 71%. Serum SIRT1 level was related to age of onset, disease duration, Hoehn-Yahr staging scale (H-Y stage), Unified Parkinson’s Disease Rating Scale III (UPDRS III), and Mini-Mental State Examination (MMSE). PD patients with cognitive impairment had lower serum SIRT1 than those with normal cognitive ability.

Conclusions

Serum SIRT1 was reduced in PD patients and associated with disease severity and cognitive function. Our results indicate that SIRT1 may be a potential biomarker for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee A, Gilbert RM (2016) Epidemiology of Parkinson’s disease. Neurol Clin 34(4):955–965. https://doi.org/10.1016/j.ncl.2016.06.012

    Article  PubMed  Google Scholar 

  2. Eusebi P, Franchini D, De Giorgi M, Abraha I, Montedori A, Casucci P, Calabresi P, Tambasco N (2019) Incidence and prevalence of Parkinson’s disease in the Italian region of Umbria: a population-based study using healthcare administrative databases. Neurol Sci 40(8):1709–1712. https://doi.org/10.1007/s10072-019-03872-w

    Article  PubMed  Google Scholar 

  3. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet (London, England) 386(9996):896–912. https://doi.org/10.1016/s0140-6736(14)61393-3

    Article  CAS  Google Scholar 

  4. Kaur R, Mehan S, Singh S (2019) Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 40(1):13–23. https://doi.org/10.1007/s10072-018-3585-x

    Article  PubMed  Google Scholar 

  5. Salminen A, Kaarniranta K, Kauppinen A (2013) Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci 14(2):3834–3859. https://doi.org/10.3390/ijms14023834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA (2018) Brain SIRT1 mediates metabolic homeostasis and neuroprotection. Front Endocrinol 9:702. https://doi.org/10.3389/fendo.2018.00702

    Article  Google Scholar 

  7. Kilic U, Gok O, Erenberk U, Dundaroz MR, Torun E, Kucukardali Y, Elibol-Can B, Uysal O, Dundar T (2015) A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS One 10(3):e0117954. https://doi.org/10.1371/journal.pone.0117954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh P, Hanson PS, Morris CM (2017) SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci 18(1):46. https://doi.org/10.1186/s12868-017-0364-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen C, Xia B, Tang L, Wu W, Tang J, Liang Y, Yang H, Zhang Z, Lu Y, Chen G, Yang Y, Zhao Y (2019) Echinacoside protects against MPTP/MPP(+)-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab Brain Dis 34(1):203–212. https://doi.org/10.1007/s11011-018-0330-3

    Article  CAS  PubMed  Google Scholar 

  10. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Dis 30(12):1591–1601. https://doi.org/10.1002/mds.26424

    Article  Google Scholar 

  11. Giladi N, Nicholas AP, Asgharnejad M, Dohin E, Woltering F, Bauer L, Poewe W (2016) Efficacy of rotigotine at different stages of Parkinson’s disease symptom severity and disability: a post hoc analysis according to baseline Hoehn and Yahr stage. J Parkinsons Dis 6(4):741–749. https://doi.org/10.3233/jpd-160847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ling C, Liang J, Zhang C, Li R, Mou Q, Qin J, Li X, Wang J (2018) Synergistic effects of salvianolic acid B and puerarin on cerebral ischemia reperfusion injury. Molecules (Basel, Switzerland) 23(3). https://doi.org/10.3390/molecules23030564

  13. Zhong Y, Chen AF, Zhao J, Gu YJ, Fu GX (2016) Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people. Aging Clin Exp Res 28(4):641–645. https://doi.org/10.1007/s40520-015-0472-7

    Article  PubMed  Google Scholar 

  14. Mariani S, Fiore D, Basciani S, Persichetti A, Contini S, Lubrano C, Salvatori L, Lenzi A, Gnessi L (2015) Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 49(3):711–716. https://doi.org/10.1007/s12020-014-0465-x

    Article  CAS  PubMed  Google Scholar 

  15. Liang X, Liu Y, Jia S, Xu X, Dong M, Wei Y (2019) SIRT1: the value of functional outcome, stroke-related dementia, anxiety, and depression in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 28(1):205–212. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.037

    Article  PubMed  Google Scholar 

  16. Kumar R, Chaterjee P, Sharma PK, Singh AK, Gupta A, Gill K, Tripathi M, Dey AB, Dey S (2013) Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS One 8(4):e61560. https://doi.org/10.1371/journal.pone.0061560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li R, Sun X, Shu Y, Wang Y, Xiao L, Wang Z, Hu X, Kermode AG, Qiu W (2017) Serum CCL20 and its association with SIRT1 activity in multiple sclerosis patients. J Neuroimmunol 313:56–60. https://doi.org/10.1016/j.jneuroim.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  18. Singh AP, Ramana G, Bajaj T, Singh V, Dwivedi S, Behari M, Dey AB, Dey S (2019) Elevated serum SIRT 2 may differentiate Parkinson’s disease from atypical Parkinsonian syndromes. Front Mol Neurosci 12:129. https://doi.org/10.3389/fnmol.2019.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie B, Liu Z, Jiang L, Liu W, Song M, Zhang Q, Zhang R, Cui D, Wang X, Xu S (2017) Increased serum miR-206 level predicts conversion from amnestic mild cognitive impairment to Alzheimer’s disease: a 5-year follow-up study. J Alzheimers Dis 55(2):509–520. https://doi.org/10.3233/jad-160468

    Article  CAS  PubMed  Google Scholar 

  20. Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, Di Paola M, Dell'aquila C, De Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T (2014) Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 1842(7):902–915. https://doi.org/10.1016/j.bbadis.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  21. Rao SP, Sharma N, Kalivendi SV (1861) Embelin averts MPTP-induced dysfunction in mitochondrial bioenergetics and biogenesis via activation of SIRT1. Biochim Biophys Acta Bioenerg 2020(3):148157. https://doi.org/10.1016/j.bbabio.2020.148157

    Article  CAS  Google Scholar 

  22. Tuon T, Souza PS, Santos MF, Pereira FT, Pedroso GS, Luciano TF, De Souza CT, Dutra RC, Silveira PC, Pinho RA (2015) Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxidative Med Cell Longev 2015:261809–261810. https://doi.org/10.1155/2015/261809

    Article  CAS  Google Scholar 

  23. Gonzalez-Horta A (2015) The interaction of alpha-synuclein with membranes and its implication in Parkinson’s disease: a literature review. Nat Prod Commun 10(10):1775–1778

    PubMed  Google Scholar 

  24. Yao P, Li Y, Yang Y, Yu S, Chen Y (2019) Triptolide improves cognitive dysfunction in rats with vascular dementia by activating the SIRT1/PGC-1alpha signaling pathway. Neurochem Res 44(8):1977–1985. https://doi.org/10.1007/s11064-019-02831-3

    Article  CAS  PubMed  Google Scholar 

  25. Flores-Leon M, Perez-Dominguez M, Gonzalez-Barrios R, Arias C (2019) Palmitic acid-induced NAD(+) depletion is associated with the reduced function of SIRT1 and increased expression of BACE1 in hippocampal neurons. Neurochem Res 44(7):1745–1754. https://doi.org/10.1007/s11064-019-02810-8

    Article  CAS  PubMed  Google Scholar 

  26. Kida S, Serita T (2014) Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res Bull 105:17–24. https://doi.org/10.1016/j.brainresbull.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  27. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109. https://doi.org/10.1038/nature09271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu N, Huang F, Jian C, Qin L, Lu F, Wang Y, Zhang Z, Zhang Q (2019) Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: a pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-kappaB pathway. Phytother Res 33(5):1438–1447. https://doi.org/10.1002/ptr.6335

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by Nantong Science and Technology Project (MS12015093, MS12018042, JC2019031), Foundation of Health Commission of Jiangsu Province (H2018035, H2019057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Affiliated Hospital No.2 of Nantong University ethics committee. Informed consent was obtained from all patients.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhu, X., Zhou, Y. et al. Reduced serum SIRT1 levels in patients with Parkinson’s disease: a cross-sectional study in China. Neurol Sci 42, 1835–1841 (2021). https://doi.org/10.1007/s10072-020-04711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04711-z

Keywords

Navigation