Skip to main content

Advertisement

Log in

The global burden of cerebral small vessel disease related to neurological deficit severity and clinical outcomes of acute ischemic stroke after IV rt-PA treatment

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background and purpose

Various types of cerebral small vessel diseases (CSVD) are commonly coexisting and the clinical outcome possibly is determined by their combined effect. The present study was designed to explore the possible relationship between the global burden of CSVD and clinical outcomes after recombinant tissue plasminogen activator (rt-PA) treatment of ischemic stroke.

Methods

We enrolled patients with acute ischemic stroke (AIS) after IV rt-PA treatment between August 2016 and July 2018. According to the total burden rating scale of CSVD, we calculated the total CSVD score for white matter hyperintensities, lacunar infarction, cerebral microbleeds, and perivascular spaces. All patients were assessed on the basis of the National Institutes of Health Stroke Scale (NIHSS) score and the modified Rankin Scale (mRS) score at 90 days after stroke. We used multivariate logistic regression analysis to examine the associations between global burden of CSVD and degree of neurological deficit and clinical outcomes. ROC curve analysis was used to determine cut-off values of the total CSVD score in predicting poor outcomes.

Results

The results showed that the total CSVD score was independently associated with moderate to severe stroke (OR 2.187, 95%CI 1.495–3.119, P < 0.001). Initial NIHSS (OR 1.23, 95%CI 1.144–1.330, P < 0.001), OTT (OR 1.007, 95%CI 1.000–1.014, P = 0.037), and CSVD score (OR 3.157, 95%CI 2.120–4.703, P < 0.001) was significantly related to poor functional outcome at 3 months. The total CVSD score cut-off value of 1.5 was determined at best to distinguish between good prognosis and poor outcome (AUC 0.7534 [95%CI 0.6883–0.8185]).

Conclusions

The global burden of CSVD was independently associated with neurological deficit severity and clinical outcomes of AIS after IV rt-PA treatment. The total CVSD score is a reliable predictor for poor outcomes of AIS after IV rt-PA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38(7):1167–1186. https://doi.org/10.1007/s10072-017-2938-1

    Article  PubMed  Google Scholar 

  2. Tejada-Meza H, Modrego PJ (2017) Cerebellar vermis: a vulnerable location of remote brain haemorrhages after thrombolysis for ischaemic stroke. Neurol Sci 38(1):185–187. https://doi.org/10.1007/s10072-016-2728-1

    Article  PubMed  Google Scholar 

  3. Wardlaw JM, Smith C, Dichgans M (2013) Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12(5):483–497. https://doi.org/10.1016/S1474-4422(13)70060-7

    Article  PubMed  Google Scholar 

  4. Shi Y, Wardlaw JM (2016) Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol 1(3):83–92. https://doi.org/10.1136/svn-2016-000035

    Article  PubMed  PubMed Central  Google Scholar 

  5. Inzitari D (2003) Leukoaraiosis: an independent risk factor for stroke? Stroke 34(8):2067–2071. https://doi.org/10.1161/01.STR.0000080934.68280.82

    Article  PubMed  Google Scholar 

  6. Rajani RM, Williams A (2017) Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin Sci 131(5):369–379. https://doi.org/10.1042/CS20160618

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hainsworth AH, Fisher MJ (2017) A dysfunctional blood-brain barrier and cerebral small vessel disease. Neurology 88(5):420–421. https://doi.org/10.1212/WNL.0000000000003561

    Article  PubMed  Google Scholar 

  8. Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, de Craen AJ, van Buchem MA, Wardlaw JM (2016) Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J Cereb Blood Flow Metab 36(10):1653–1667. https://doi.org/10.1177/0271678X16662891

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henninger N, Lin E, Haussen DC, Lehman LL, Takhtani D, Selim M, Moonis M (2013) Leukoaraiosis and sex predict the hyperacute ischemic core volume. Stroke 44(1):61–67. https://doi.org/10.1161/STROKEAHA.112.679084

    Article  PubMed  Google Scholar 

  10. Ay H, Arsava EM, Rosand J, Furie KL, Singhal AB, Schaefer PW, Wu O, Gonzalez RG, Koroshetz WJ, Sorensen AG (2008) Severity of leukoaraiosis and susceptibility to infarct growth in acute stroke. Stroke 39(5):1409–1413. https://doi.org/10.1161/STROKEAHA.107.501932

    Article  PubMed  Google Scholar 

  11. Henninger N, Khan MA, Zhang J, Moonis M, Goddeau RP Jr (2014) Leukoaraiosis predicts cortical infarct volume after distal middle cerebral artery occlusion. Stroke 45(3):689–695. https://doi.org/10.1161/STROKEAHA.113.002855

    Article  PubMed  Google Scholar 

  12. Helenius J, Henninger N (2015) Leukoaraiosis burden significantly modulates the association between infarct volume and National Institutes of Health stroke scale in ischemic stroke. Stroke 46(7):1857–1863. https://doi.org/10.1161/STROKEAHA.115.009258

    Article  PubMed  Google Scholar 

  13. Liu Y, Gong P, Sun H, Zhang S, Zhou J, Zhang Y (2019) Leukoaraiosis is associated with poor outcomes after successful recanalization for large vessel occlusion stroke. Neurol Sci. https://doi.org/10.1007/s10072-018-3698-2

  14. Curtze S, Haapaniemi E, Melkas S, Mustanoja S, Putaala J, Sairanen T, Sibolt G, Tiainen M, Tatlisumak T, Strbian D (2015) White matter lesions double the risk of post-thrombolytic intracerebral hemorrhage. Stroke 46(8):2149–2155. https://doi.org/10.1161/STROKEAHA.115.009318

    Article  PubMed  Google Scholar 

  15. Zand R, Tsivgoulis G, Singh M, McCormack M, Goyal N, Ishfaq MF, Shahripour RB, Nearing K, Elijovich L, Alexandrov AW, Liebeskind DS, Alexandrov AV (2017) Cerebral microbleeds and risk of intracerebral hemorrhage post intravenous thrombolysis. J Stroke Cerebrovasc Dis 26(3):538–544. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.127

    Article  PubMed  Google Scholar 

  16. Huijts M, Duits A, van Oostenbrugge RJ, Kroon AA, de Leeuw PW, Staals J (2013) Accumulation of MRI markers of cerebral small vessel disease is associated with decreased cognitive function. A study in first-ever lacunar stroke and hypertensive patients. Front Aging Neurosci 5:72. https://doi.org/10.3389/fnagi.2013.00072

    Article  PubMed  PubMed Central  Google Scholar 

  17. Staals J, Booth T, Morris Z, Bastin ME, Gow AJ, Corley J, Redmond P, Starr JM, Deary IJ, Wardlaw JM (2015) Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiol Aging 36(10):2806–2811. https://doi.org/10.1016/j.neurobiolaging.2015.06.024

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brenner D, Labreuche J, Pico F, Scheltens P, Poirier O, Cambien F, Amarenco P, Investigators G (2008) The renin-angiotensin-aldosterone system in cerebral small vessel disease. J Neurol 255(7):993–1000. https://doi.org/10.1007/s00415-008-0816-8

    Article  CAS  PubMed  Google Scholar 

  19. Pico F, Labreuche J, Touboul PJ, Leys D, Amarenco P (2005) Intracranial arterial dolichoectasia and small-vessel disease in stroke patients. Ann Neurol 57(4):472–479. https://doi.org/10.1002/ana.20423

    Article  PubMed  Google Scholar 

  20. Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, Knottnerus IL, Staals J (2013) Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke 44(11):2995–2999. https://doi.org/10.1161/STROKEAHA.113.002545

    Article  PubMed  Google Scholar 

  21. Uiterwijk R, van Oostenbrugge RJ, Huijts M, De Leeuw PW, Kroon AA, Staals J (2016) Total cerebral small vessel disease MRI score is associated with cognitive decline in executive function in patients with hypertension. Front Aging Neurosci 8:301. https://doi.org/10.3389/fnagi.2016.00301

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O'Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw FE, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Oostenbrugge R, Pantoni L, Speck O, Stephan BC, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M, nEuroimaging STfRVco (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838. https://doi.org/10.1016/S1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM (2010) Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 41(3):450–454. https://doi.org/10.1161/STROKEAHA.109.564914

    Article  Google Scholar 

  24. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149(2):351–356. https://doi.org/10.2214/ajr.149.2.351

    Article  CAS  Google Scholar 

  25. Staals J, Makin SD, Doubal FN, Dennis MS, Wardlaw JM (2014) Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 83(14):1228–1234. https://doi.org/10.1212/WNL.0000000000000837

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arba F, Inzitari D, Ali M, Warach SJ, Luby M, Lees KR, Collaboration SVI (2017) Small vessel disease and clinical outcomes after IV rt-PA treatment. Acta Neurol Scand 136(1):72–77. https://doi.org/10.1111/ane.12745

    Article  CAS  PubMed  Google Scholar 

  27. Lau KK, Li L, Schulz U, Simoni M, Chan KH, Ho SL, Cheung RTF, Kuker W, Mak HKF, Rothwell PM (2017) Total small vessel disease score and risk of recurrent stroke: validation in 2 large cohorts. Neurology 88(24):2260–2267. https://doi.org/10.1212/WNL.0000000000004042

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bandettini di Poggio M, Finocchi C, Brizzo F, Altomonte F, Bovis F, Mavilio N, Serrati C, Malfatto L, Mancardi G, Balestrino M (2019) Management of acute ischemic stroke, thrombolysis rate, and predictors of clinical outcome. Neurol Sci 40(2):319–326. https://doi.org/10.1007/s10072-018-3644-3

    Article  PubMed  Google Scholar 

  29. Abdul-Rahim AH, Fulton RL, Sucharew H, Kleindorfer D, Khatri P, Broderick JP, Lees KR, Collaborators V (2015) National institutes of health stroke scale item profiles as predictor of patient outcome: external validation on independent trial data. Stroke 46(2):395–400. https://doi.org/10.1161/STROKEAHA.114.006837

    Article  PubMed  Google Scholar 

  30. Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, Woolson RF, Hansen MD (1999) Baseline NIH stroke scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 53(1):126–131

    Article  CAS  PubMed  Google Scholar 

  31. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, Kim LJ, Mayer SA, Sheth KN, Schwamm LH, American Heart Association Stroke C, Council on C, Stroke N, Council on Clinical C, Council on Quality of C, Outcomes R (2017) Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48(12):e343–e361. https://doi.org/10.1161/STR.0000000000000152

    Article  PubMed  Google Scholar 

  32. Yaghi S, Eisenberger A, Willey JZ (2014) Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. JAMA Neurol 71(9):1181–1185. https://doi.org/10.1001/jamaneurol.2014.1210

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (2017YFC0114300) and Science and Technology Department Key Diseases Standardized Diagnosis and Treatment Project of Jiangsu Provincial.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zhou or Qi Fang.

Ethics declarations

The study was approved by the ethics committees of the First Hospital Affiliated to Soochow University (No. 2018104) without need for informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, T., Diao, S. et al. The global burden of cerebral small vessel disease related to neurological deficit severity and clinical outcomes of acute ischemic stroke after IV rt-PA treatment. Neurol Sci 40, 1157–1166 (2019). https://doi.org/10.1007/s10072-019-03790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03790-x

Keywords

Navigation