Skip to main content
Log in

The IL-10-producing regulatory B cells (B10 cells) and regulatory T cell subsets in neuromyelitis optica spectrum disorder

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

B cells contribute to the pathogenesis of neuromyelitis optica (NMO) by producing Aquaporin 4-specific autoantibodies (AQP4-ab); on the other hand, there are certain B cells that suppress immune responses by producing regulatory cytokines, such as IL-10. In this study, we investigated the presence of IL-10-producing Breg cells among lymphocyte subsets. Twenty-two seropositive NMO spectrum disorder (NMOSD) patients (29 samples) and 13 healthy controls (HCs) (14 samples) were enrolled. All NMOSD patients have received one or more immunosuppressive drugs. The phenotype and frequency of B cell and T cell subsets in the peripheral blood were measured by flow cytometry. We defined Breg cells as IL-10-producing B (B10) cells, which are CD19+CD39+CD1d+IL-10+. The potential relations were evaluated between specific lymphocyte subsets and AQP4-ab intensity measured by the cell-based indirect immunofluorescence assay. The frequency of B10 cells was higher in patients with NMOSD regardless of the disease status than that in HCs (attack samples; p = 0.009 and remission samples; p < 0.001, respectively). In addition, the frequency of IL-17+ Treg cells among Treg cells was higher during remission than during an attack (uncorrected p = 0.032). Among the lymphocyte subsets, B10 cells alone showed a positive correlation with the intensity of AQP4-ab positivity (ρ [rho] = 0.402 and p = 0.031). It was suggested that the suppressive subsets including B10 and IL-17+ Treg cells might have important roles in controlling disease status in NMOSD. Further functional studies may help to elucidate the immunological role of B10 and IL-17+ Treg cells in NMOSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, De Seze J, Fujihara K, Greenberg B, Jacob A (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85(2):177–189. https://doi.org/10.1212/WNL.0000000000001729

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. The Lancet Neurology 6(9):805–815. https://doi.org/10.1016/S1474-4422(07)70216-8

    Article  CAS  PubMed  Google Scholar 

  3. Jarius S, Paul F, Franciotta D, Wateres P, Zipp F, Hohlfeld R, Vincent A, Wildemann B (2008) Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nature Clinical Practice Neurology 4(4):202–214. https://doi.org/10.1038/ncpneuro0764

    Article  CAS  PubMed  Google Scholar 

  4. Hilgenberg E, Ries S, Shen P, Fillatreau S (2014) From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 28:77–83

    Article  PubMed  Google Scholar 

  5. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, Fan B, O’Connor RA, Anderton SM, Bar-Or A (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010. https://doi.org/10.1084/jem.20111675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitsdoerffer M, Kuchroo V, Korn T (2013) Immunology of neuromyelitis optica: a T cell–B cell collaboration. Ann N Y Acad Sci 1283(1):57–66. https://doi.org/10.1111/nyas.12118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S (2008) B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N Engl J Med 358(7):676–688. https://doi.org/10.1056/NEJMoa0706383

    Article  CAS  PubMed  Google Scholar 

  8. Cree B, Lamb S, Morgan K, Chen A, Waubant E, Genain C (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64(7):1270–1272. https://doi.org/10.1212/01.WNL.0000159399.81861.D5

    Article  CAS  PubMed  Google Scholar 

  9. Yanaba K, Bouaziz J-D, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1d hi CD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28(5):639–650. https://doi.org/10.1016/j.immuni.2008.03.017

    Article  CAS  PubMed  Google Scholar 

  10. Tedder TF (2015) B10 cells: a functionally defined regulatory B cell subset. J Immunol 194(4):1395–1401. https://doi.org/10.4049/jimmunol.1401329

    Article  CAS  PubMed  Google Scholar 

  11. Iwata Y, Matsushita T, Horikawa M, DiLillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD (2011) Characterization of a rare IL-10–competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541. https://doi.org/10.1182/blood-2010-07-294249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Figueiró F, Muller L, Funk S, Jackson E, Battastini A, Whiteside T (2016) Phenotypic and functional characteristics of CD39high human regulatory B cells (Breg). OncoImmunology 5(2):e1082703. https://doi.org/10.1080/2162402X.2015.1082703

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19+ CD24 hi CD38 hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140. https://doi.org/10.1016/j.immuni.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  14. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz I, Anolik JH (2009) Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol 182(10):5982–5993. https://doi.org/10.4049/jimmunol.0801859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalampokis I, Yoshizaki A, Tedder TF (2013) IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 15(1):S1. https://doi.org/10.1186/ar3907

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bennett JL, O'connor KC, Bar-Or A, Zamvil SS, Hemmer B, Tedder TF, von Büdingen H-C, Stuve O, Yeaman MR, Smith TJ (2015) B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2(3):e104. https://doi.org/10.1212/NXI.0000000000000104

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimizu Y, Ota K, Kubo S, Kabasawa C, Kobayashi M, Ohashi T, Uchiyama S (2011) Association of Th1/Th2-related chemokine receptors in peripheral T cells with disease activity in patients with multiple sclerosis and neuromyelitis optica. Eur Neurol 66(2):91–97. https://doi.org/10.1159/000329576

    Article  CAS  PubMed  Google Scholar 

  18. Habib J, Deng J, Lava N, Tyor W, Galipeau J (2015) Blood B cell and regulatory subset content in multiple sclerosis patients. J Mult Scler 2(139):2376–0389.1000139

    Google Scholar 

  19. Kang E-S, Min J-H, Lee KH, Kim BJ (2012) Clinical usefulness of cell-based indirect immunofluorescence assay for the detection of aquaporin-4 antibodies in neuromyelitis optica spectrum disorder. Ann Lab Med 32(5):331–338. https://doi.org/10.3343/alm.2012.32.5.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsushita T, Tedder TF (2011) Identifying regulatory B cells (B10 cells) that produce IL-10 in mice. In: Suppression and regulation of immune responses. Springer, pp 99–111

  21. Miyagaki T, Fujimoto M, Sato S (2015) Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research. Int Immunol 27(10):495–504. https://doi.org/10.1093/intimm/dxv026

    Article  CAS  PubMed  Google Scholar 

  22. Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42(4):607–612. https://doi.org/10.1016/j.immuni.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Yang J, Chu Y, Xue Y, Xuan D, Zheng S, Zou H (2014) T follicular helper cells and regulatory B cells dynamics in systemic lupus erythematosus. PLoS One 9(2):e88441. https://doi.org/10.1371/journal.pone.0088441

    Article  PubMed  PubMed Central  Google Scholar 

  24. Llorente L, Richaud-Patin Y, Fior R, Alcocer-Varela J, Wijdenes J, Fourrier BM, Galanaud P, Emilie D (1994) In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjöugren’s syndrome, and systemic lupus erythematosus. Arthritis Rheumatol 37(11):1647–1655. https://doi.org/10.1002/art.1780371114

    Article  CAS  Google Scholar 

  25. Michel L, Chesneau M, Manceau P, Genty A, Garcia A, Salou M, Ngono AE, Pallier A, Jacq-Foucher M, Lefrère F (2014) Unaltered regulatory B-cell frequency and function in patients with multiple sclerosis. Clin Immunol 155(2):198–208. https://doi.org/10.1016/j.clim.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  26. Quan C, Yu H, Qiao J, Xiao B, Zhao G, Wu Z, Li Z, Lu C (2013) Impaired regulatory function and enhanced intrathecal activation of B cells in neuromyelitis optica: distinct from multiple sclerosis. Mult Scler J 19(3):289–298. https://doi.org/10.1177/1352458512454771

    Article  CAS  Google Scholar 

  27. Kalampokis I, Yoshizaki A, Tedder TF (2013) IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 15(1):1

    Article  Google Scholar 

  28. Duddy ME, Alter A, Bar-Or A (2004) Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol 172(6):3422–3427. https://doi.org/10.4049/jimmunol.172.6.3422

    Article  CAS  PubMed  Google Scholar 

  29. Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, Mauri C (2013) CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5(173):173ra123

    Article  Google Scholar 

  30. Cui D, Zhang L, Chen J, Zhu M, Hou L, Chen B, Shen B (2015) Changes in regulatory B cells and their relationship with rheumatoid arthritis disease activity. Clin Exp Med 15(3):285–292. https://doi.org/10.1007/s10238-014-0310-9

    Article  CAS  PubMed  Google Scholar 

  31. Quan C, ZhangBao J, Lu J, Zhao C, Cai T, Wang B, Yu H, Qiao J, Lu C (2015) The immune balance between memory and regulatory B cells in NMO and the changes of the balance after methylprednisolone or rituximab therapy. J Neuroimmunol 282:45–53. https://doi.org/10.1016/j.jneuroim.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  32. Chihara N, Aranami T, Sato W, Miyazaki Y, Miyake S, Okamoto T, Ogawa M, Toda T, Yamamura T (2011) Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci 108(9):3701–3706. https://doi.org/10.1073/pnas.1017385108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hinson SR, McKeon A, Fryer JP, Apiwattanakul M, Lennon VA, Pittock SJ (2009) Prediction of neuromyelitis optica attack severity by quantitation of complement-mediated injury to aquaporin-4-expressing cells. Arch Neurol 66(9):1164–1167. https://doi.org/10.1001/archneurol.2009.188

    Article  PubMed  Google Scholar 

  34. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. https://doi.org/10.1016/j.cell.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  35. Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17(6):673–675. https://doi.org/10.1038/nm.2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafler DA (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249. https://doi.org/10.1182/blood-2008-10-183251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G, Valmori D (2009) Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt. Proc Natl Acad Sci 106(21):8635–8640. https://doi.org/10.1073/pnas.0900621106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2016R1D1A1B03934476). These funding sources were not involved in the creation of the study protocol, in data analysis, or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Suk Kang or Byoung Joon Kim.

Electronic supplementary material

ESM 1

(DOCX 16.8 kb)

ESM 2

(DOCX 13.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, E.B., Cho, HJ., Seok, J.M. et al. The IL-10-producing regulatory B cells (B10 cells) and regulatory T cell subsets in neuromyelitis optica spectrum disorder. Neurol Sci 39, 543–549 (2018). https://doi.org/10.1007/s10072-018-3248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3248-y

Keywords

Navigation