Skip to main content

Advertisement

Log in

Association between TBK1 mutations and risk of amyotrophic lateral sclerosis/frontotemporal dementia spectrum: a meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Recently, mutations in TBK1 (TANK-binding kinase 1) have been reported to be a cause of amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) spectrum, but the relationship between them remains unclear owing to the small sample size and low mutation rate. Therefore, we performed a two-stage meta-analysis to investigate the frequency of TBK1 mutations in ALS/FTD patients and the association between the mutations and risk of ALS/FTD spectrum. In the first stage, 12 studies involving 4173 ALS/FTD patients were included. The frequencies of loss of function (LoF) and missense mutations were 1.0% (95% CI 0.6–1.7%) and 1.8% (95% CI 0.9–3.4%) in ALS/FTD patients respectively. Subgroup analysis suggested a higher prevalence of TBK1 mutations in European patients than that in Asian patients. In the second stage, 7 studies involving 3146 cases and 4856 controls were enrolled. Results showed that TBK1 LoF mutations were associated with a significant increased risk for ALS/FTD spectrum (OR 11.78; 95% CI 4.21–33.00; p < 0.0001), while TBK1 missense mutations were associated with a moderately increased susceptibility for ALS/FTD spectrum (OR 1.62; 95% CI 1.19–2.19; p = 0.002). In conclusion, TBK1 LoF and missense mutations are not frequently found in ALS/FTD patients, and both of them are associated with an increased risk for ALS/FTD spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wei QQ, Zheng ZZ, Guo XY, Ou RW, Chen XP, Huang R, Yang J, Shang HF (2016) Association between depression and survival in Chinese amyotrophic lateral sclerosis patients. Neurol Sci 37(4):557–563. https://doi.org/10.1007/s10072-015-2472-y

    Article  PubMed  Google Scholar 

  2. Santurtun A, Villar A, Delgado-Alvarado M, Riancho J (2016) Trends in motor neuron disease: association with latitude and air lead levels in Spain. Neurol Sci 37(8):1271–1275. https://doi.org/10.1007/s10072-016-2581-2

    Article  PubMed  Google Scholar 

  3. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM, DeTure M, Knopman DS, Josephs KA, Parisi JE, Petersen RC, Boylan KB, Boeve BF, Graff-Radford NR, Veltman JA, Gilissen C, Murray ME, Dickson DW, Rademakers R (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130(1):77–92. https://doi.org/10.1007/s00401-015-1436-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ji AL, Zhang X, Chen WW, Huang WJ (2017) Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J Med Genet 54(3):145–154. https://doi.org/10.1136/jmedgenet-2016-104271

    Article  CAS  PubMed  Google Scholar 

  5. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65(4):586–590. https://doi.org/10.1212/01.wnl.0000172911.39167.b6

    Article  CAS  PubMed  Google Scholar 

  6. Morgan S, Orrell RW (2016) Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull 119(1):87–98. https://doi.org/10.1093/bmb/ldw026

    Article  CAS  PubMed  Google Scholar 

  7. Lashley T, Rohrer JD, Mead S, Revesz T (2015) Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 41(7):858–881. https://doi.org/10.1111/nan.12250

    Article  PubMed  Google Scholar 

  8. Gros-Louis F, Gaspar C, Rouleau GA (2006) Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):956–972. https://doi.org/10.1016/j.bbadis.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  9. Graff-Radford NR, Woodruff BK (2007) Frontotemporal dementia. Semin Neurol 27(1):48–57. https://doi.org/10.1055/s-2006-956755

    Article  PubMed  Google Scholar 

  10. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chio A, Restagno G, Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, Talbot K, Ansorge O, Hernandez DG, Arepalli S, Sabatelli M, Mora G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering-Brown S, Traynor BJ (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330. https://doi.org/10.1016/S1474-4422(12)70043-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helgason E, Phung QT, Dueber EC (2013) Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett 587(8):1230–1237. https://doi.org/10.1016/j.febslet.2013.01.059

    Article  CAS  PubMed  Google Scholar 

  12. Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY (2012) The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediat Inflamm 2012:979105

    Article  Google Scholar 

  13. Clement JF, Meloche S, Servant MJ (2008) The IKK-related kinases: from innate immunity to oncogenesis. Cell Res 18(9):889–899. https://doi.org/10.1038/cr.2008.273

    Article  CAS  PubMed  Google Scholar 

  14. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10(11):1215–1221. https://doi.org/10.1038/ni.1800

    Article  CAS  PubMed  Google Scholar 

  15. Gleason CE, Ordureau A, Gourlay R, Arthur JS, Cohen P (2011) Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta. J Biol Chem 286(41):35663–35674. https://doi.org/10.1074/jbc.M111.267567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41(4):458–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333(6039):228–233. https://doi.org/10.1126/science.1205405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37(2):223–234. https://doi.org/10.1016/j.immuni.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edens BM, Miller N, Ma YC (2016) Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci 10:44

    Article  PubMed  PubMed Central  Google Scholar 

  20. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, Marroquin N, Nordin F, Hubers A, Weydt P, Pinto S, Press R, Millecamps S, Molko N, Bernard E, Desnuelle C, Soriani MH, Dorst J, Graf E, Nordstrom U, Feiler MS, Putz S, Boeckers TM, Meyer T, Winkler AS, Winkelman J, de Carvalho M, Thal DR, Otto M, Brannstrom T, Volk AE, Kursula P, Danzer KM, Lichtner P, Dikic I, Meitinger T, Ludolph AC, Strom TM, Andersen PM, Weishaupt JH (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636. https://doi.org/10.1038/nn.4000

    Article  CAS  PubMed  Google Scholar 

  21. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, YF L, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, Vianney de Jong JM, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Consortium FS, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441. https://doi.org/10.1126/science.aaa3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  23. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  24. Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 88(7):540–549. https://doi.org/10.1136/jnnp-2016-315018

    Article  PubMed  Google Scholar 

  25. Tsai PC, Liu YC, Lin KP, Liu YT, Liao YC, Hsiao CT, Soong BW, Yip PK, Lee YC (2016) Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 40(191):e111–e196

    Google Scholar 

  26. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B, Engelborghs S, Vandenbulcke M, De Baets G, Baumer V, Cuijt I, Van den Broeck M, Peeters K, Mattheijssens M, Rousseau F, Vandenberghe R, De Jonghe P, Cras P, De Deyn PP, Martin JJ, Cruts M, Van Broeckhoven C, Consortium B (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85(24):2116–2125. https://doi.org/10.1212/WNL.0000000000002220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim YE, Oh KW, Noh MY, Nahm M, Park J, Lim SM, Jang JH, Cho EH, Ki CS, Lee S, Kim SH (2017) Genetic and functional analysis of TBK1 variants in Korean patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging 50:170.e171–170.e176

    Article  Google Scholar 

  28. Le Ber I, De Septenville A, Millecamps S, Camuzat A, Caroppo P, Couratier P, Blanc F, Lacomblez L, Sellal F, Fleury MC, Meininger V, Cazeneuve C, Clot F, Flabeau O, LeGuern E, Brice A (2015) TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging 36(11):3116.e3115–3116.e3118

    Google Scholar 

Download references

Acknowledgments

The authors thank all those who collaborated in the analysis, interpretation of data, and writing the article. This work was supported by the Natural Science Foundation of Shandong Province under Grant [number ZR2014HM064].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Online resource 1

Quality Assessment of Articles in the first stage (AHRQ). (DOCX 18 kb)

Online resource 2

Quality Assessment of Articles in the second stage (NOS). (DOCX 16 kb)

Online resource 3

a, Begg’s funnel plot of studies reporting TBK1 LoF mutations in ALS/FTD patients. b, Begg’s funnel plot after using trim and fill methods in Fig. S1(a). (GIF 13 kb)

High resolution image

(TIFF 962 kb)

Online resource 4

a, Begg’s funnel plot of studies reporting TBK1 missense mutations in ALS/FTD patients. b, Begg’s funnel plot after deletion of study by Freishmidt et al. (GIF 13 kb)

High resolution image

(TIFF 961 kb)

Online resource 5

Begg’s funnel plot of TBK1 LoF mutations and risk of ALS/FTD spectrum. (GIF 4 kb)

High resolution image

(TIFF 284 kb)

Online resource 6

a, Begg’s funnel plot about TBK1 missense mutations and risk of ALS/FTD spectrum. b, Begg’s funnel plot after using trim and fill methods in Fig. S4(b). (GIF 12 kb)

High resolution image

(TIFF 813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, R., Tuo, M., Li, P. et al. Association between TBK1 mutations and risk of amyotrophic lateral sclerosis/frontotemporal dementia spectrum: a meta-analysis. Neurol Sci 39, 811–820 (2018). https://doi.org/10.1007/s10072-018-3246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3246-0

Keywords

Navigation