Skip to main content

Advertisement

Log in

Quantitative evaluation of hyperbaric oxygen efficacy in experimental traumatic brain injury: an MRI study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

To use DCE-magnetic resonance imaging (MRI) and diffusion-weighted imaging to evaluate the hyperbaric oxygen efficacy (HBO) in experimental traumatic brain injury (TBI). Forty-two rabbits were randomly divided into four groups: TBI, TBI + HBO, sham group, sham + HBO. The TBI + HBO and sham + HBO received a total of 10 HBO treatments within 7 days following TBI, and MRI was performed within a month after TBI. Functional assessments were performed pre-TBI, and at 1 and 30 days. In focal lesion area, Ktrans in TBI + HBO group was lower than TBI group at both acute and subacute phase (p < 0.05). ADC was higher in TBI + HBO group than TBI group at acute phase (p < 0.01), but lower at subacute phase (p < 0.05). In perifocal area, Ktrans were lower in TBI + HBO group than TBI group at acute phase (p < 0.01) after TBI. ADC was lower in the TBI + HBO group than in the TBI group at both acute and subacute phase (p < 0.01).The VCS was higher in TBI + HBO group than TBI group at 30 days (p < 0.05). HBO could improve the impaired BBB and cytotoxic edema after TBI and promote the recovery of neurofunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gill AL, Bell CN (2004) Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM 97(7):385–395

    Article  CAS  PubMed  Google Scholar 

  2. Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF (2008) Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res 1221:126–133

    Article  CAS  PubMed  Google Scholar 

  3. Vlodavsky E, Palzur E, Soustiel JF (2006) Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol 32(1):40–50

    Article  CAS  PubMed  Google Scholar 

  4. Rockswold SB, Rockswold GL, Vargo JM, Erickson CA, Sutton RL, Bergman TA et al (2001) Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J Neurosurg 94(3):403–411

    Article  CAS  PubMed  Google Scholar 

  5. Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA et al (2010) A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 112(5):1080–1094

    Article  CAS  PubMed  Google Scholar 

  6. Huang L, Obenaus A (2011) Hyperbaric oxygen therapy for traumatic brain injury. Med Gas Res 1(1):21

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lin JW, Tsai JT, Lee LM, Lin CM, Hung CC, Hung KS et al (2008) Effect of hyperbaric oxygen on patients with traumatic brain injury. Acta Neurochir Suppl 101:145–149

    Article  CAS  PubMed  Google Scholar 

  8. Sahni T, Jain M, Prasad R, Sogani SK, Singh VP (2012) Use of hyperbaric oxygen in traumatic brain injury: retrospective analysis of data of 20 patients treated at a tertiary care centre. Br J Neurosurg 26(2):202–207

    Article  PubMed  Google Scholar 

  9. McDonagh M, Helfand M, Carson S, Russman BS (2004) Hyperbaric oxygen therapy for traumatic brain injury: a systematic review of the evidence. Arch Phys Med Rehabil 85(7):1198–1204

    Article  PubMed  Google Scholar 

  10. Bennett MH, Trytko B, Jonker B (2004) Hyperbaric oxygen therapy for the adjunctive treatment of traumatic brain injury. Cochrane Database Syst Rev 4:CD004609

    PubMed  Google Scholar 

  11. Adamides AA, Winter CD, Lewis PM, Cooper DJ, Kossmann T, Rosenfeld JV (2006) Current controversies in the management of patients with severe traumatic brain injury. ANZ J Surg 76(3):163–174

    Article  PubMed  Google Scholar 

  12. Masel BE (2011) Hyperbaric oxygen therapy for traumatic brain injury: still an enigma. Arch Phys Med Rehabil 92(9):1519–1521

    Article  PubMed  Google Scholar 

  13. Vlodavsky E, Palzur E, Feinsod M, Soustiel JF (2005) Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study. Acta Neuropathol 110(2):120–126

    Article  CAS  PubMed  Google Scholar 

  14. Wei XE, Zhang YZ, Li YH, Li MH, Li WB (2012) Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study. J Neurotrauma 29(14):2413–2420

    Article  PubMed  Google Scholar 

  15. Biegon A, Fry PA, Paden CM, Alexandrovich A, Tsenter J, Shohami E (2004) Dynamic changes in N-methyl- d-aspartate receptors after closed head injury in mice: implications for treatment of neurological and cognitive deficits. Proc Natl Acad Sci USA 101(14):5117–5122

    Article  CAS  PubMed  Google Scholar 

  16. King DR, Cohn SM, Proctor KG (2004) Changes in intracranial pressure, coagulation, and neurologic outcome after resuscitation from experimental traumatic brain injury with hetastarch. Surgery 136(2):355–363

    Article  PubMed  Google Scholar 

  17. Li YH, Wang JB, Li MH, Li WB, Wang D (2012) Quantification of brain edema and hemorrhage by MRI after experimental traumatic brain injury in rabbits predicts subsequent functional outcome. Neurol Sci 33(4):731–740

    Article  PubMed  Google Scholar 

  18. Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367

    Article  CAS  PubMed  Google Scholar 

  19. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232

    Article  CAS  PubMed  Google Scholar 

  20. Immonen RJ, Kharatishvili I, Niskanen JP, Gröhn H, Pitkänen A, Gröhn OH (2009) Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat–11 months follow-up. Exp Neurol 215(1):29–40

    Article  PubMed  Google Scholar 

  21. Baldwin SA, Fugaccia I, Brown DR, Brown LV, Scheff SW (1996) Blood–brain barrier breach following cortical contusion in the rat. J Neurosurg 85(3):476–481

    Article  CAS  PubMed  Google Scholar 

  22. Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226(1):33–36

    Article  PubMed  Google Scholar 

  23. Rockswold SB, Rockswold GL, Defillo A (2007) Hyperbaric oxygen in traumatic brain injury. Neurol Res 29(2):162–172

    Article  PubMed  Google Scholar 

  24. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Matchett GA, Martin RD, Zhang JH (2009) Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res 31(2):114–121

    Article  CAS  PubMed  Google Scholar 

  27. Veltkamp R, Bieber K, Wagner S, Beynon C, Siebing DA, Veltkamp C et al (2006) Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res 1076:231–237

    Article  CAS  PubMed  Google Scholar 

  28. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129(4):1021–1029

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Z, Daugherty WP, Sun D, Levasseur JE, Altememi N, Hamm RJ et al (2007) Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg 106(4):687–694

    Article  CAS  PubMed  Google Scholar 

  30. Wang GH, Zhang XG, Jiang ZL, Li X, Peng LL, Li YC et al (2010) Neuroprotective effects of hyperbaric oxygen treatment on traumatic brain injury in the rat. J Neurotrauma 27(9):1733–1743

    Article  PubMed  Google Scholar 

  31. Günther A, Küppers-Tiedt L, Schneider PM, Kunert I, Berrouschot J, Schneider D et al (2005) Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. Eur J Neurosci 21(11):3189–3194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant No. 81271540, No. 81000609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, XE., Li, YH., Zhao, H. et al. Quantitative evaluation of hyperbaric oxygen efficacy in experimental traumatic brain injury: an MRI study. Neurol Sci 35, 295–302 (2014). https://doi.org/10.1007/s10072-013-1514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1514-6

Keywords

Navigation