Skip to main content
Log in

Motor dysfunction of the “non-affected” lower limb: a kinematic comparative study between hemiparetic stroke and total knee prosthesized patients

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

In patients with hemispheric stroke, abnormal motor performances are described also in the ipsilateral limbs. They may be due to a cortical reorganization in the unaffected hemisphere; moreover, also peripheral mechanisms may play a role. To explore this hypothesis, we studied motor performances in 15 patients with hemispheric stroke and in 14 patients with total knee arthroplasty, which have a reduced motility in the prosthesized leg. Using the unaffected leg, they performed five superimposed circular trajectories in a prefixed pathway on a computerized footboard, while looking at a marker on the computer screen. The average trace error was significantly different between the groups of patients and healthy subjects [F (2,25) = 7.9; p = 0.003]; on the contrary, the test time execution did not vary significantly. In conclusion, both groups of patients showed abnormal motor performances of the unaffected leg; this result suggests a likely contribution of peripheral mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jebsen RH, Griffith ER, Long EW, Fowler R (1971) Function of the “normal” hand in stroke patients. Arch Phys Med Rehabil 52:170–174

    PubMed  CAS  Google Scholar 

  2. Jones RD, Donaldson IM, Parkin PJ (1989) Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 112:113–132

    Article  PubMed  Google Scholar 

  3. Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M (1996) Performances of the “unaffected” upper extremity of elderly stroke patients. Stroke 27:1564–1570

    PubMed  CAS  Google Scholar 

  4. Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112:749–763

    Article  PubMed  Google Scholar 

  5. Smutok MA, Grafman G, Salazar AM, Sweeney JK, Jonas BS, DiRocco PJ (1989) Effects of unilateral brain damage on contralateral and ipsilateral upper extremity function in hemiplegia. Phys Ther 69:195–203

    PubMed  CAS  Google Scholar 

  6. Kim SH, Pohl PS, Luchies CW, Stylianou AP, Won Y (2003) Ipsilateral deficits of targeted movements after stroke. Arch Phys Med Rehabil 84:719–724

    PubMed  Google Scholar 

  7. Andrews AW, Bohannon RW (2000) Distribution of muscle strength impairments following stroke. Clin Rehabil 14:79–87

    Article  PubMed  CAS  Google Scholar 

  8. Sunderland A, Bowers MP, Sluman S-M, Wilcock DJ, Ardron ME (1999) Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. Stroke 30:949–955

    PubMed  CAS  Google Scholar 

  9. Yelnik A, Bonan I, Debray M, Lo E, Gelbert F, Bussel B (1996) Changes in the execution of a complex manual task after ipsilateral ischemic cerebral hemispheric stroke. Arch Phys Med Rehabil 77:806–810

    Article  PubMed  CAS  Google Scholar 

  10. Winstein C, Pohl P (1995) Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res 105:163–174

    Article  PubMed  CAS  Google Scholar 

  11. Carey JR, Baxter TL, Di Fabio RP (1998) Tracking control in the nonparetic hand of subjects with stroke. Arch Phys Med Rehabil 79:435–441

    Article  PubMed  CAS  Google Scholar 

  12. Hermsdorfer J, Laimgruber K, Kerkhoff G, Mai N, Goldenberg G (1999) Effects of unilateral brain damage on grip selection, coordination, and kinematics of ipsilesional prehension. Exp Brain Res 128:41–51

    Article  PubMed  CAS  Google Scholar 

  13. Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324

    Article  PubMed  Google Scholar 

  14. Cramer SC (1999) Stroke recovery. Lessons from functional MR imaging and other methods of human brain mapping. Phys Med Rehabil Clin N Am 10:875–886

    PubMed  CAS  Google Scholar 

  15. Dewald JP, Beer RF, Given JD, McGuire JR, Rymer WZ (1999) Reorganization of flexion reflexes in the upper extremity of hemiparetic subjects. Muscle Nerve 22:1209–1221

    Article  PubMed  CAS  Google Scholar 

  16. Bertrand AM, Mercier C, Shun PL, Bourbonnais D, Desrosiers J (2004) Effects of weakness on symmetrical bilateral grip force exertion in subjects with hemiparesis. J Neurophysiol 91:1579–1585

    Article  PubMed  Google Scholar 

  17. Petersson IF, Boegard T, Saxne T, Silman AJ, Svensson B (1997) Radiographic osteoarthritis of the knee classified by the Ahlback and Kellgren & Lawrence systems for the tibiofemoral joint in people aged 35–54 years with chronic knee pain. Ann Rheum Dis 56:493–496

    Article  PubMed  CAS  Google Scholar 

  18. Thilmann AF, Fellows SJ, Garms E (1991) The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain 114:233–244

    PubMed  Google Scholar 

  19. Gauthier J, Bourbonnais D, Filiatrault J, Gravel D, Arsenault AB (1992) Characterization of contralateral torques during static hip efforts in healthy subjects and subjects with hemiparesis. Brain 115:1193–1207

    Article  PubMed  Google Scholar 

  20. Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56

    Article  PubMed  CAS  Google Scholar 

  21. Gordon J, Ghilardi MF, Ghez C (1995) Impairments of reaching movements in patients without proprioception I. Spatial errors. J Neurophysiol 73:347–360

    PubMed  CAS  Google Scholar 

  22. Ting LH, Raasch CC, Brown DA, Kautz SA, Zajac FE (1998) Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling. J Neurophysiol 80:1341–1351

    PubMed  CAS  Google Scholar 

  23. Pap G, Meyer M, Weiler HT, Machner A, Awiszus F (2000) Proprioception after total knee arthroplasty: a comparison with clinical outcome. Acta Orthop Scand 71:153–159

    Article  PubMed  CAS  Google Scholar 

  24. Wada M, Kawahara H, Shimada S, Miyazaki T, Baba H (2002) Joint proprioception before and after total knee arthroplasty. Clin Orthop Relat Res 403:161–167

    Article  PubMed  Google Scholar 

  25. Hanlon CA, Buffington AL, McKeown MJ (2005) New brain networks are active after right MCA stroke when moving the ipsilesional arm. Neurology 64:114–120

    PubMed  Google Scholar 

  26. Hasan Z (1992) Role of proprioceptors in neural control. Curr Opin Neurobiol 2:824–829

    Article  PubMed  CAS  Google Scholar 

  27. Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5:786–791

    Article  PubMed  CAS  Google Scholar 

  28. Devanne H, Maton B (1998) Role of proprioceptive information in the temporal coordination between joints. Exp Brain Res 119:58–64

    Article  PubMed  CAS  Google Scholar 

  29. Zanette G, Manganotti P, Fiaschi A, Tamburin S (2004) Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol 115:1264–1275

    Article  PubMed  Google Scholar 

  30. Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1996) Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27:1105–1111

    PubMed  CAS  Google Scholar 

  31. Buchkremer-Ratzmann I, Witte OW (1997) Extended brain disinhibition following small photothrombotic lesions in rat frontal cortex. NeuroReport 8:519–522

    Article  PubMed  CAS  Google Scholar 

  32. Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481

    Article  PubMed  Google Scholar 

  33. Andrews RJ (1991) Transhemispheric diaschisis. A review and comment. Stroke 22:943–949

    PubMed  CAS  Google Scholar 

  34. Cramer SC, Nelles G, Benson RR et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527

    PubMed  CAS  Google Scholar 

  35. Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after post-stroke hemiparesis. Stroke 29:112–122

    PubMed  CAS  Google Scholar 

  36. Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M (2005) Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain 128:1122–1138

    Article  PubMed  Google Scholar 

  37. Brasil-Neto JP, Cohen LG, Pascual-Leone A, Jabir FK, Wall RT, Hallett M (1992) Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology 42:1302–1306

    PubMed  CAS  Google Scholar 

  38. Sadato N, Zeffiro TA, Campbell G, Konishi J, Shibasaki H, Hallett M (1995) Regional cerebral blood flow changes in motor cortical areas after transient anesthesia of the forearm. Ann Neurol 37:74–81

    Article  PubMed  CAS  Google Scholar 

  39. Manganotti P, Patuzzo S, Cortese F, Palermo A, Smania N, Fiaschi A (2002) Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin Neurophysiol 113:936–943

    Article  PubMed  CAS  Google Scholar 

  40. Pohl PS, Winstein CJ (1999) Practice effects on the less-affected upper extremity after stroke. Arch Phys Med Rehabil 80:668–675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Davide Cattaneo, Pht, from Fondazione Don Gnocchi of Milan, for his contribution on technical and methodological aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Galardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagnato, S., Boccagni, C., Boniforti, F. et al. Motor dysfunction of the “non-affected” lower limb: a kinematic comparative study between hemiparetic stroke and total knee prosthesized patients. Neurol Sci 30, 107–113 (2009). https://doi.org/10.1007/s10072-009-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-009-0031-0

Keywords

Navigation