Skip to main content
Log in

A machine learning approach to infant distress calls and maternal behaviour of wild chimpanzees

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Distress calls are an acoustically variable group of vocalizations ubiquitous in mammals and other animals. Their presumed function is to recruit help, but there has been much debate on whether the nature of the disturbance can be inferred from the acoustics of distress calls. We used machine learning to analyse episodes of distress calls of wild infant chimpanzees. We extracted exemplars from those distress call episodes and examined them in relation to the external event triggering them and the distance to the mother. In further steps, we tested whether the acoustic variants were associated with particular maternal responses. Our results suggest that, although infant chimpanzee distress calls are highly graded, they can convey information about discrete problems experienced by the infant and about distance to the mother, which in turn may help guide maternal parenting decisions. The extent to which mothers rely on acoustic cues alone (versus integrate other contextual-visual information) to decide upon intervening should be the focus of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Code is available at: https://github.com/ChristophDahl/Chimpanzee-Distress-Calls

References

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–266

    CAS  PubMed  Google Scholar 

  • Arcadi AC, Wrangham RW (1999) Infanticide in chimpanzees: review of cases and a new within-group observation from the Kanyawara study group in Kibale National Park. Primates 40:337–351

    Google Scholar 

  • Barajas-Montiel SE, Reyes-Garcia CA (2006) Fuzzy support vector machines for automatic infant cry recognition. In: Intelligent Computing in Signal Processing and Pattern Recognition. Springer, pp 876–881

  • Bard KA (2000) Crying in infant primates: Insights into the development of crying in chimpanzees. In: Barr RG et al (eds) Crying as a sign, a symptom, and a signal: clinical emotional and developmental aspects of infant and toddler crying. Mac Keith Press, London, p 157

    Google Scholar 

  • Bayart F, Hayashi KT, Faull KF et al (1990) Influence of maternal proximity on behavioral and physiological responses to separation in infant rhesus monkeys (Macaca mulatta). Behav Neurosci 104:98

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Boll S (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans Acoust Speech Signal Process 27:113–120

    Google Scholar 

  • Brennan M, Kirkland J (1982) Classification of infant cries using descriptive scales. Infant Behav Dev 5:341–346

    Google Scholar 

  • Briefer EF (2012) Vocal expression of emotions in mammals: mechanisms of production and evidence. J Zool. https://doi.org/10.1111/j.1469-7998.2012.00920.x@10.1111/(ISSN)1469-7998.SoundProduction

    Article  Google Scholar 

  • Caldara R, Abdi H (2006) Simulating the ‘other-race’effect with autoassociative neural networks: further evidence in favor of the face-space model. Perception 35:659–670

    PubMed  Google Scholar 

  • Chang C-Y, Li J-J (2016) Application of deep learning for recognizing infant cries. In: 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). IEEE, pp 1–2

  • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2:1–27

    Google Scholar 

  • Choqueuse V (2020) Vuvuzela sound denoising algorithm. Version 1.2.0.0URL https://fr.mathworks.com/matlabcentral/fileexchange/27912-vuvuzela-sound-denoising-algorithm?focused=b421486c-db15-d58a-6f4d-5026e5f66319&tab=function

  • Christensson K, Cabrera T, Christensson E et al (1995) Separation distress call in the human neonate in the absence of maternal body contact. Acta Paediatr 84:468–473

    CAS  PubMed  Google Scholar 

  • Crockford C, Wittig RM, Mundry R, Zuberbühler K (2012) Wild chimpanzees inform ignorant group members of danger. Curr Biol 22:142–146. https://doi.org/10.1016/j.cub.2011.11.053

    Article  CAS  PubMed  Google Scholar 

  • Crockford C, Wittig RM, Zuberbühler K (2017) Vocalizing in chimpanzees is influenced by social-cognitive processes. Sci Adv 3:e1701742. https://doi.org/10.1126/sciadv.1701742

    Article  PubMed  PubMed Central  Google Scholar 

  • Crockford C, Gruber T, Zuberbühler K (2018) Chimpanzee quiet hoo variants differ according to context. R Soc Open Sci 5:172066

    PubMed  PubMed Central  Google Scholar 

  • Dahl CD, Wyss C, Zuberbühler K, Bachmann I (2018) Social information in equine movement gestalts. Anim Cogn 21:583–594

    PubMed  Google Scholar 

  • Deng L, Li X (2013) Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 21:1060–1089

    Google Scholar 

  • Dezecache G, Crockford C, Zuberbühler K (2019) The development of communication in alarm contexts in wild chimpanzees. Behav Ecol Sociobiol 73:104. https://doi.org/10.1007/s00265-019-2716-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggeling WJ (1947) Observations on the ecology of the Budongo rain forest Uganda. J Ecol 34:20–87

    Google Scholar 

  • Ephraim Y, Malah D (1984) Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Trans Acoust Speech Signal Process 32:1109–1121

    Google Scholar 

  • Fedurek P, Zuberbühler K, Dahl CD (2016) Sequential information in a great ape utterance. Sci Rep 6:38226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer J (1998) Barbary macaques categorize shrill barks into two call types. Anim Behav 55:799–807

    CAS  PubMed  Google Scholar 

  • Fröhlich M, Hobaiter C (2018) The development of gestural communication in great apes. Behav Ecol Sociobiol 72:194

    Google Scholar 

  • Fröhlich M, Wittig RM, Pika S (2016) Should I stay or should I go? Initiation of joint travel in mother–infant dyads of two chimpanzee communities in the wild. Anim Cogn 19:483–500

    PubMed  PubMed Central  Google Scholar 

  • Fröhlich M, Wittig RM, Pika S (2019) The ontogeny of intentional communication in chimpanzees in the wild. Dev Sci 22:e12716

    PubMed  Google Scholar 

  • Fuller BF (1991) Acoustic discrimination of three types of infant cries. Nurs Res 40:156–160

    CAS  PubMed  Google Scholar 

  • Gerencsér L, Vásárhelyi G, Nagy M et al (2013) Identification of behaviour in freely moving dogs (Canis familiaris) using inertial sensors. PLoS ONE 8:e77814

    PubMed  PubMed Central  Google Scholar 

  • Gilbert HR, Robb MP (1996) Vocal fundamental frequency characteristics of infant hunger cries: birth to 12 months. Int J Pediatr Otorhinolaryngol 34:237–243

    CAS  PubMed  Google Scholar 

  • Goodall J (1986) The chimpanzees of Gombe: patterns of behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Green PA, Brandley NC, Nowicki S (2020) Categorical perception in animal communication and decision-making. Behav Ecol. https://doi.org/10.1093/beheco/araa004

    Article  Google Scholar 

  • Hobaiter C, Byrne RW (2011) The gestural repertoire of the wild chimpanzee. Anim Cogn 14:745–767

    PubMed  Google Scholar 

  • Hobaiter C, Byrne RW (2014) The meanings of chimpanzee gestures. Curr Biol 24:1596–1600

    CAS  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Illingworth RS (1955) Crying in Infants and Children. Br Med J 1:75–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelleher JD, Mac Namee B, D’arcy A (2015) Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. MIT press, Cambridge

    Google Scholar 

  • Levréro F, Mathevon N (2013) Vocal signature in wild infant chimpanzees. Am J Primatol 75:324–332

    PubMed  Google Scholar 

  • Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lingle S, Riede T (2014) Deer mothers are sensitive to infant distress vocalizations of diverse mammalian species. Am Nat 184:510–522

    PubMed  Google Scholar 

  • Lingle S, Wyman MT, Kotrba R et al (2012) What makes a cry a cry? A review of infant distress vocalizations. Curr Zool 58:698–726

    Google Scholar 

  • Logan B (2000) Mel frequency cepstral coefficients for music modeling. In: Ismir. pp 1–11

  • Lowe AE, Hobaiter C, Newton-Fisher NE (2019) Countering infanticide: chimpanzee mothers are sensitive to the relative risks posed by males on differing rank trajectories. Am J Phys Anthropol 168:3–9

    PubMed  Google Scholar 

  • Lowe AE, Hobaiter C, Asiimwe C et al (2020) Intra-community infanticide in wild, eastern chimpanzees: a 24-year review. Primates 61:69–82

    PubMed  Google Scholar 

  • MacLean PD (1985) Brain evolution relating to family, play, and the separation call. Arch Gen Psychiatry 42:405–417

    CAS  PubMed  Google Scholar 

  • May B, Moody DB, Stebbins WC (1989) Categorical perception of conspecific communication sounds by Japanese macaques, Macaca fuscata. J Acoust Soc Am 85:837–847. https://doi.org/10.1121/1.397555

    Article  CAS  PubMed  Google Scholar 

  • Mielke A, Zuberbühler K (2013) A method for automated individual, species and call type recognition in free-ranging animals. Anim Behav 86:475–482

    Google Scholar 

  • Mohri M, Rostamizadeh A, Talwalkar A (2018) Foundations of machine learning. MIT press, Cambridge

    Google Scholar 

  • Müller E, Hollien H, Murry T (1974) Perceptual responses to infant crying: identification of cry types. J Child Lang 1:89–95

    Google Scholar 

  • Newman JD (2007) Neural circuits underlying crying and cry responding in mammals. Behav Brain Res 182:155–165

    PubMed  PubMed Central  Google Scholar 

  • Nithya B, Ilango V (2017) Predictive analytics in health care using machine learning tools and techniques. In: 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, pp 492–499

  • Olsson F (2009) A literature survey of active machine learning in the context of natural language processing

  • Plooij FX, Bygott D, Sackett GP (1984) The behavioral development of free-living chimpanzee babies and infants. Ablex Norwood, NJ

    Google Scholar 

  • Porter FL, Miller RH, Marshall RE (1986) Neonatal pain cries: effect of circumcision on acoustic features and perceived urgency. Child Dev 57:790–802

    CAS  PubMed  Google Scholar 

  • Reynolds V (2005) The chimpanzees of the Budongo forest: Ecology, behaviour and conservation. OUP, Oxford

    Google Scholar 

  • Riecken D (2000) Introduction: personalized views of personalization. Commun ACM 43:26–28

    Google Scholar 

  • Saraswathy J, Hariharan M, Yaacob S, Khairunizam W (2012) Automatic classification of infant cry: A review. In: 2012 International Conference on Biomedical Engineering (ICoBE). pp 543–548

  • Schel AM, Townsend SW, Machanda Z et al (2013) Chimpanzee alarm call production meets key criteria for intentionality. PLoS ONE 8:e76674. https://doi.org/10.1371/journal.pone.0076674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe N, Cohen I, Garg A, Huang TS (2005) Machine learning in computer vision. Springer, New York

    Google Scholar 

  • Soltis J (2004) The signal functions of early infant crying. Behav Brain Sci 27:443–458

    PubMed  Google Scholar 

  • Tajiri Y, Yabuwaki R, Kitamura T, Abe S (2010) Feature extraction using support vector machines. In: International Conference on Neural Information Processing. Springer, pp 108–115

  • Townsend SW, Slocombe KE, Thompson ME, Zuberbühler K (2007) Female-led infanticide in wild chimpanzees. Curr Biol 17:R355–R356

    CAS  PubMed  Google Scholar 

  • Turesson HK, Ribeiro S, Pereira DR et al (2016) Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS ONE 11:e0163041

    PubMed  PubMed Central  Google Scholar 

  • Versteegh M, Kuhn J, Synnaeve G et al (2016) Classification and automatic transcription of primate calls. J Acoust Soc Am 140:26–30

    Google Scholar 

  • Wasz-Höckert O, Partanen TJ, Vuorenkoski V et al (1964) The identification of some specific meanings in infant vocalization. Experientia 20:154–154

    PubMed  Google Scholar 

  • Watts DP, Mitani JC (2000) Infanticide and cannibalism by male chimpanzees at Ngogo, Kibale National Park, Uganda. Primates 41:357–365

    PubMed  Google Scholar 

  • Weary DM, Lawson GL, Thompson BK (1996) Sows show stronger responses to isolation calls of piglets associated with greater levels of piglet need. Anim Behav 52:1247–1253. https://doi.org/10.1006/anbe.1996.0272

    Article  Google Scholar 

  • Wiener SG, Bayart F, Faull KF, Levine S (1990) Behavioral and physiological responses to maternal separation in squirrel monkeys (Saimiri sciureus). Behav Neurosci 104:108

    CAS  PubMed  Google Scholar 

  • Wiesenfeld AR, Malatesta CZ, Deloach LL (1981) Differential parental response to familiar and unfamiliar infant distress signals. Infant Behav Dev 4:281–295

    Google Scholar 

  • Wiltschko AB, Johnson MJ, Iurilli G et al (2015) Mapping sub-second structure in mouse behavior. Neuron 88:1121–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeskind PS, Sale J, Maio ML et al (1985) Adult perceptions of pain and hunger cries: a synchrony of arousal. Child Dev 56:549–554

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Uganda Wildlife Authority (UWA) and the Uganda National Council for Science and Technology (UNCST) for permission to conduct the study, and Geoffrey Muhanguzi, Caroline Asiimwe, Sam Adue and Monday M’Botella for their support in the field. We are grateful to two anonymous Reviewers, the Editor and Bahar Tuncgenc for helpful comments on the manuscript.

Funding

We are grateful to the Royal Zoological Society of Scotland for providing core funding to the Budongo Conservation Field Station. This research was supported by funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration (Grant agreement no 283871), a Fyssen Foundation post-doctoral fellowship awarded to GD, the Swiss National Science Foundation (PZ00P3_154741) and Start up-funding of the Taipei Medical University (108-6402-004-112) awarded to CDD.

Author information

Authors and Affiliations

Authors

Contributions

GD, KZ and MDR designed the research; GD collected the data; GD analysed the behavioural data; CDD implemented the acoustic extraction and the machine learning procedure; all Authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Guillaume Dezecache or Christoph D. Dahl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Supplementary material 2 (WAV 864 kb)

Supplementary material 3 (WAV 2376 kb)

Supplementary material 4 (WAV 446 kb)

Supplementary material 5 (WAV 342 kb)

Supplementary material 6 (WAV 1698 kb)

Supplementary material 7 (WAV 50 kb)

Supplementary material 8 (WAV 134 kb)

Supplementary material 9 (WAV 156 kb)

Supplementary material 10 (WAV 1320 kb)

Supplementary material 11 (WAV 204 kb)

Supplementary material 12 (WAV 170 kb)

Supplementary material 13 (WAV 101 kb)

Supplementary material 14 (WAV 260 kb)

Supplementary material 15 (WAV 550 kb)

Supplementary material 16 (WAV 170 kb)

Supplementary material 17 (TIFF 11895 kb)

Supplementary material 18 (TIFF 664 kb)

Supplementary material 19 (TIFF 4341 kb)

Supplementary material 20 (TIFF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezecache, G., Zuberbühler, K., Davila-Ross, M. et al. A machine learning approach to infant distress calls and maternal behaviour of wild chimpanzees. Anim Cogn 24, 443–455 (2021). https://doi.org/10.1007/s10071-020-01437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-020-01437-5

Keywords

Navigation