Skip to main content
Log in

Tortoises develop and overcome position biases in a reversal learning task

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

The capability of animals to alter their behaviour in response to novel or familiar stimuli, or behavioural flexibility, is strongly associated with their ability to learn in novel environments. Reptiles are capable of learning complex tasks and offer a unique opportunity to study the relationship between visual proficiency and behavioural flexibility. The focus of this study was to investigate the behavioural flexibility of red-footed tortoises and their ability to perform reversal learning. Reversal learning involves learning a particular discrimination task, after which the previously rewarded cue is reversed and then subjects perform the task with new reward contingencies. Red-footed tortoises were required to learn to recognise and approach visual cues within a Y-maze. Once subjects learned the visual discrimination, tortoises were required to successfully learn four reversals. Tortoises required significantly more trials to reach criterion (80% correct) in the first reversal, indicating the difficulty of unlearning the positive stimulus presented during training. Nevertheless, subsequent reversals required a similar number of sessions to the training stage, demonstrating that reversal learning improved up to a point. All subjects tested developed a position bias within the Y-maze that was absent prior to training, but most were able to exhibit reversal learning. Red-footed tortoises primarily adopted a win-stay choice strategy while learning the discrimination without much evidence for a lose-shift choice strategy, which may explain limits to their behavioural flexibility. However, improving performance across reversals while simultaneously overcoming a position bias provides insights into the cognitive abilities of tortoises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bonati B, Csermely D (2011) Complementary lateralisation in the exploratory and predatory behaviour of the common wall lizard (Podarcis muralis). Later Asymmetries Body Brain Cognit 16(4):462–470

    Article  Google Scholar 

  • Bonati B, Csermely D, Romani R (2008) Lateralisation in the predatory behaviour of the common wall lizard (Podarcis muralis). Behav Proc 79(3):171–174

    Article  CAS  Google Scholar 

  • Bonati B, Csermely D, López P, Martín J (2010) Lateralisation in the escape behaviour of the common wall lizard (Podarcis muralis). Behav Brain Res 207(1):1–6

    Article  Google Scholar 

  • Bonati B, Csermely D, Sovrano VA (2013) Looking at a predator with the left or right eye: asymmetry of response in lizards. Later Asymmetries Body Brain Cognition 18(3):329–339

    Article  Google Scholar 

  • Bond AB, Kamil AC, Balda RP (2007) Serial reversal learning and the evolution of behavioral flexibility in three species of North American corvids. J Comp Psychol 121(4):372–379

    Article  Google Scholar 

  • Cantalupo C, Bisazza A, Vallortigara G (1995) Lateralisation of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia 33(12):1637–1646

    Article  CAS  Google Scholar 

  • Casteel DB (1911) The discriminative ability of the painted turtle. J Anim Behav 1(1)

  • Csermely D, Bonati B, Romani R (2010) Lateralisation in a detour test in the common wall lizard (Podarcis muralis). Laterality 15(5):535–547

    Article  CAS  Google Scholar 

  • Davey G (1989) Ecological learning theory. Routledge, London

    Google Scholar 

  • Day LB, Crews D, Wilczynski W (1999) Spatial and reversal learning in congeneric lizards with different foraging strategies. Anim Behav 57(2):393–407

    Article  CAS  Google Scholar 

  • Day LB, Ismail N, Wilczynski W (2003) Use of position and feature cues in discrimination learning by the Whiptail Lizard (Cnemidophorus inornatus). J Comp Psychol 117(4):440

    Article  Google Scholar 

  • Deckel AW (1995) Laterality of aggressive responses in Anolis. J Exp Zool Part A Ecol Genet Physiol 272(3):194–200

    Article  Google Scholar 

  • Delius JD, Delius JM (2006) Intelligences and brains: an evolutionary birds’ eye view. In: Wasserman EA, Zentall TR (eds) Comparative cognition. Oxford University Press, Oxford, pp 555–579

    Google Scholar 

  • Facchin L, Bisazza A, Vallortigara G (1999) What causes lateralisation of detour behavior in fish? Evidence for asymmetries in eye use. Behav Brain Res 103(2):229–234

    Article  CAS  Google Scholar 

  • Fagot J, Vauclair J (1988a) Handedness and bimanual coordination in the lowland gorilla. Brain Behav Evol 32:89–95

    Article  CAS  Google Scholar 

  • Fagot J, Vauclair J (1988b) Handedness and manual specialization in the baboon. Neuropsychologia 26:795–804

    Article  CAS  Google Scholar 

  • Fox K (2003) Effect displays in R for generalised linear models. J Stat Softw 8(15):1–27. http://www.jstatsoft.org/v08/i15/

  • Franklin WE, Lima SL (2001) Laterality in avian vigilance: do sparrows have a favourite eye? Anim Behav 62(5):879–885

    Article  Google Scholar 

  • Gaalema DE (2011) Visual discrimination and reversal learning in rough-necked monitor lizards. J Comp Psychol 125(2):246–249

    Article  Google Scholar 

  • Gans C, Gaunt AS, Webb PW (2011) Vertebrate Locomotion. Comprehensive physiology, Supplement 30: Handbook of Physiology, Comparative Physiology: 55–213. First published in print 1997

  • Güntürkün O, Diekamp B, Manns M, Nottelmann F, Prior H, Schwarz A, Skiba M (2000) Asymmetry pays: visual lateralisation improves discrimination success in pigeons. Curr Biol 10(17):1079–1081

    Article  Google Scholar 

  • Halekoh U, Højsgaard S (2014) A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J Stat Softw 59(9):1–30

    Google Scholar 

  • Holmes PA, Bitterman ME (1966) Spatial and visual habit reversal in the turtle. J Comp Physiol Psychol 62(2):328

    Article  CAS  Google Scholar 

  • Hopkins WD (1995) Hand preferences for a coordinated bimanual task in 110 chimpanzees (Pan troglodytes): cross-sectional analysis. J Comp Psychol 109(3):291

    Article  CAS  Google Scholar 

  • Hopkins DW, Rabinowitz DM (1997) Manual specialisation and tool use in captive chimpanzees (Pan troglodytes): the effect of unimanual and bimanual strategies on hand preference. Later Asymmetries Body Brain Cognit 2(3–4):267–277

    CAS  Google Scholar 

  • Jayes AS, McNeil Alexander R (1980) The gaits of chelonians: walking techniques for very low speeds. J Zool 191:353–378

    Article  Google Scholar 

  • Leal M, Powell BJ (2011) Behavioural flexibility and problem-solving in a tropical lizard. Biol Lett rsbl20110480

  • Lehman RA (1980) Distribution and changes in strength of hand preference of cynomolgus monkeys. Brain Behav Evol 17(3):209–217

    Article  CAS  Google Scholar 

  • Liu Y, Day LB, Summers K, Burmeister SS (2016) Learning to learn: advanced behavioural flexibility in a poison frog. Anim Behav 111:167–172

    Article  Google Scholar 

  • Mackintosh NJ, Mcgonigle B, Holgate V (1968) Factors underlying improvement in serial reversal learning. Can J Psychol 22(2):85

    Article  CAS  Google Scholar 

  • MacPhail E (1982) Brain and intelligence in vertebrates. Oxford University Press, Oxford, pp 136–167

    Google Scholar 

  • Magat M, Brown C (2009) Laterality enhances cognition in Australian parrots. Proc R Soc Lond B Biol Sci 276(1676):4155–4162

    Article  Google Scholar 

  • Marchant LF, Steklis HD (1986) Hand preference in a captive island group of chimpanzees (Pan troglodytes). Am J Primatol 10(4):301–313

    Article  Google Scholar 

  • Martin P, Bateson P (1986) Measuring animal behaviour: a laboratory guide. Cambridge University Press, Cambridge, 200 p

    Google Scholar 

  • McGrew WC, Marchant LF (1999) Laterality of hand use pays off in foraging success for wild chimpanzees. Primates 40(3):509–513

    Article  Google Scholar 

  • Meguerditchian A, Calcutt SE, Lonsdorf EV, Ross SR, Hopkins WD (2010) Brief communication: captive gorillas are right-handed for bimanual feeding. Am J Phys Anthropol 141(4):638–645

    PubMed  PubMed Central  Google Scholar 

  • Moskovits D, Bjorndal A (1990) Diet and food preferences of the tortoises Geochelone carbonaria and G. denticulata in Northwestern Brazil. Herpetologica 46(2):207–218

    Google Scholar 

  • Piddington T, Rogers LJ (2013) Strength of hand preference and dual task performance by common marmosets. Anim Cognit 1–9

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2015) nlme: linear and nonlinear mixed effects models. R package version 3.1–122, http://CRAN.Rproject.org/package = nlme

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  • Rodriguez M, Gomez C, Alonso J, Afonso D (1992) Laterality, alternation, and perseveration relationships on the T-maze test. Behav Neurosci 106(6):974

    Article  CAS  Google Scholar 

  • Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73(2):236–253

    Article  CAS  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc R Soc Lond B Biol Sci 271(6):S420–S422

    Google Scholar 

  • Smith E (2012) Can a tortoise learn to reverse? Testing the cognitive flexibility of the Red Footed tortoise (Geochelone carbonaria). Schildkröten im Fokus 5:1–18

    Google Scholar 

  • Sovrano VA, Quaresmini C, Stancher G (2017) Tortoises in front of mirrors: brain asymmetries and lateralized behaviours in the tortoise (Testudo hermanni). Behav Brain Res S0166–4328(17):30706–30704

    Google Scholar 

  • Spigel IM (1963) Running speed and intermediate brightness discrimination in the fresh water turtle (Chrysemys). J Comp Physiol Psychol 56(5):924

    Article  CAS  Google Scholar 

  • Spigel IM (1966) Variability in maze-path selection by turtle. J Gen Psychol 75(1):21–27

    Article  CAS  Google Scholar 

  • Spinozzi G, Castorina MG, Truppa V (1998) Hand preferences in unimanual and coordinated-bimanual tasks by tufted capuchin monkeys (Cebus apella). J Comp Psychol 112(2):183

    Article  Google Scholar 

  • Stancher G, Clara E, Regolin L, Vallortigara G (2006) Lateralized righting behavior in the tortoise (Testudo hermanni). Behav Brain Res 173(2):315–319

    Article  Google Scholar 

  • Tinklepaugh OL (1932) Maze learning of a turtle. J Comp Psychol 13(2):201

    Article  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralisation. Behav Brain Sci 28(4):575–588

    Article  Google Scholar 

  • Vallortigara G, Regolin L, Bortolomiol G, Tommasi L (1996) Lateral asymmetries due to preferences in eye use during visual discrimination learning in chicks. Behav Brain Res 74(1):135–143

    Article  CAS  Google Scholar 

  • Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralisation. Brain Res Rev 30(2):164–175

    Article  CAS  Google Scholar 

  • Vauclair J, Meguerditchian A, Hopkins WD (2005) Hand preferences for unimanual and coordinated bimanual tasks in baboons (Papio anubis). Cogn Brain Res 25(1):210–216

    Article  Google Scholar 

  • Wilkinson A, Huber L (2012) Cold-blooded cognition: reptilian cognitive abilities. Oxford Handb Compar Evolut Psychol 1–8

  • Wilkinson A, Coward S, Hall G (2009) Visual and response-based navigation in the tortoise (Geochelone carbonaria). Anim Cogn 12(6):779–787

    Article  Google Scholar 

  • Wilkinson A, Mueller-Paul J, Huber L (2013) Picture–object recognition in the tortoise Chelonoidis carbonaria. Anim Cogn 16(1):99–107

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, p 574

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Tom Eles for the assistance with animal care, Dr. Cheryl McCormick for the scientific discussions during the course of this study, and Dr. Miriam Richards and Brock University’s Animal Behaviour class of 2014–2015 for assistance with pilot data collection on tortoise behaviour. This research was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to GJT (RGPIN-2014-05814). Data are made available at the Brock University repository (http://hdl.handle.net/10464/13911).

Funding

The research program supporting this study was funded by an NSERC Discovery Grant to GJT (RGPIN-2014-05814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn J. Tattersall.

Ethics declarations

Conflict of interest

Justin Bridgeman and Glenn Tattersall declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 216 KB)

Supplementary material 2 (M4V 8233 KB)

Supplementary material 3 (M4V 5709 KB)

Supplementary material 4 (M4V 5760 KB)

Supplementary material 5 (M4V 5561 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridgeman, J.M., Tattersall, G.J. Tortoises develop and overcome position biases in a reversal learning task. Anim Cogn 22, 265–275 (2019). https://doi.org/10.1007/s10071-019-01243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-019-01243-8

Keywords

Navigation