Skip to main content
Log in

The effect of experience and of dots’ density and duration on the detection of coherent motion in dogs

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Knowledge about the mechanisms underlying canine vision is far from being exhaustive, especially that concerning post-retinal elaboration. One aspect that has received little attention is motion perception, and in spite of the common belief that dogs are extremely apt at detecting moving stimuli, there is no scientific support for such an assumption. In fact, we recently showed that dogs have higher thresholds than humans for coherent motion detection (Kanizsar et al. in Sci Rep UK 7:11259, 2017). This term refers to the ability of the visual system to perceive several units moving in the same direction, as one coherently moving global unit. Coherent motion perception is commonly investigated using random dot displays, containing variable proportions of coherently moving dots. Here, we investigated the relative contribution of local and global integration mechanisms for coherent motion perception, and changes in detection thresholds as a result of repeated exposure to the experimental stimuli. Dogs who had been involved in the previous study were given a conditioned discrimination task, in which we systematically manipulated dot density and duration and, eventually, re-assessed our subjects’ threshold after extensive exposure to the stimuli. Decreasing dot duration impacted on dogs’ accuracy in detecting coherent motion only at very low duration values, revealing the efficacy of local integration mechanisms. Density impacted on dogs’ accuracy in a linear fashion, indicating less efficient global integration. There was limited evidence of improvement in the re-assessment but, with an average threshold at re-assessment of 29%, dogs’ ability to detect coherent motion remains much poorer than that of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the vision literature this parameter is also called lifetime.

References

Download references

Acknowledgements

We are very grateful to the student Giulia Madumali Zotti for helping with the experiments and to Dr. Carlo Poltronieri for his technical assistance. The study was funded by the University of Padova (to LM, 2016 - prot. DOR1673431). Dr. Orsolya Kanizár was supported by a PhD grant funded by the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mongillo.

Ethics declarations

Ethical approval

None of the authors of this paper has any financial or personal relationship with other people or organizations which might inappropriately influence or bias its content.

Human and animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanizsár, O., Mongillo, P., Battaglini, L. et al. The effect of experience and of dots’ density and duration on the detection of coherent motion in dogs. Anim Cogn 21, 651–660 (2018). https://doi.org/10.1007/s10071-018-1200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-018-1200-4

Keywords

Navigation