Skip to main content
Log in

Comparative evaluations of reward dimensions in honey bees: evidence from two-alternative forced choice proboscis-extension conditioning

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

A major challenge in understanding choice behaviour is determining how subjects evaluate alternatives that differ along multiple dimensions. Of particular interest is whether similar dimensions are compared to each other or whether each alternative is assigned an absolute value (utility). We assumed that choice proportions would follow Weber’s effect, according to which discrimination is proportional to relative difference (difference/mean). We tested honey bees in a two-alternative forced choice (2AFC) paradigm of proboscis-extension response (PER) conditioning. Subjects were conditioned over six trials to associate each of two odours with sucrose solution rewards and then tested in a choice trial between the two alternatives. Each group of subjects was tested in one treatment, and there were four treatments in each of six experiments. Rewards differed in delay, duration of feeding, and sucrose concentration. In each treatment, the high-profitability alternative was better than the low-profitability alternative along a single dimension, but between treatments of each experiment values in another dimension monotonically increased. Proboscis-response proportions during the conditioning phase tended to be greater for the high-profitability alternative, and choice proportions for it in the choice phase ranged between 0.72 and 0.89 in the 24 treatments. We show for the first time that harnessed bees are sensitive to reward delay. Preferences did not differ statistically between the different treatments of any of the experiments. The results support comparative evaluation of alternatives and are pertinent to multi-attribute choice, with implications for context-dependent preferences. We also discuss the potential advantages of the 2AFC PER simultaneous choice assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramson CI, Boyd BJ (2001) An automated apparatus for conditioning proboscis extension in honey bees, Apis mellifera L. J Entomol Sci 36(1):78–92

    Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74(6):1175–1178. doi:10.2193/2009-367

    Article  Google Scholar 

  • Aw JM, Vasconcelos M, Kacelnik A (2011) How costs affect preferences: experiments on state dependence, hedonic state and within-trial contrast in starlings. Anim Behav 81(6):1117–1128. doi:10.1016/j.anbehav.2011.02.015

    Article  Google Scholar 

  • Bateson M (2002) Context-dependent foraging choices in risk-sensitive starlings. Anim Behav 64:251–260. doi:10.1006/anbe.2002.3059

    Article  Google Scholar 

  • Bateson M, Healy SD (2005) Comparative evaluation and its implications for mate choice. Trends Ecol Evol 20(12):659–664

    Article  PubMed  Google Scholar 

  • Bateson M, Kacelnik A (1995) Accuracy of memory for amount in the foraging starling, Strunus vulgaris. Anim Behav 50:431–443. doi:10.1006/anbe.1995.0257

    Article  Google Scholar 

  • Bateson M, Healy SD, Hurly TA (2002) Irrational choices in hummingbird foraging behaviour. Anim Behav 63:587–596. doi:10.1006/anbe.2001.1925

    Article  Google Scholar 

  • Bateson M, Healy SD, Hurly TA (2003) Context-dependent foraging decisions in rufous hummingbirds. Proc R Soc B-Biol Sci 270(1521):1271–1276. doi:10.1098/rspb.2003.2365

    Article  Google Scholar 

  • Beatty CD, Franks DW (2012) Discriminative predation: simultaneous and sequential encounter experiments. Curr Zool 58(4):649–657

    Google Scholar 

  • Ben-Shahar Y, Robinson GE (2001) Satiation differentially affects performance in a learning assay by nurse and forager honey bees. J Comp Physio A Sens Neural Behav Physiol 187(11):891–899

    Article  CAS  Google Scholar 

  • Bitterman ME (1996) Comparative analysis of learning in honeybees. Anim Learn Behav 24(2):123–141

    Article  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of the proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119. doi:10.1037/0735-7036.97.2.107

    Article  PubMed  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Cakmak I, Sanderson C, Blocker TD, Lisa Pham L, Checotah S, Norman AA, Harader-Pate BK, Tyler Reidenbaugh R, Nenchev P, Barthell JF, Wells H (2009) Different solutions by bees to a foraging problem. Anim Behav 77(5):1273–1280. doi:10.1016/j.anbehav.2009.01.032

    Article  Google Scholar 

  • Castellano S, Cadeddu G, Cermelli P (2012) Computational mate choice: theory and empirical evidence. Behav Process 90(2):261–277. doi:10.1016/j.beproc.2012.02.010

    Article  Google Scholar 

  • Chittka L, Skorupski P (2011) Information processing in miniature brains. Proc Biol Sci Royal Soc 278(1707):885–888. doi:10.1098/rspb 2010.2699

    Article  CAS  Google Scholar 

  • Cobey S (1999) The New World Carniolan closed population breeding project. In: Apimondia, Vancouver, Apimondia Publ. House, Bucharest, pp 26–27

  • Couvillon PA, Bitterman ME (1991) How honeybees make choices. In: Goodman JL, FIscher RC (eds) The behaviour and physiology of bees. CAB International, Wallingford pp 116–130

  • Dormal V, Andres M, Dormal G, Pesenti M (2010) Mode-dependent and mode-independent representations of numerosity in the right intraparietal sulcus. Neuroimage 52(4):1677–1686. doi:10.1016/j.neuroimage.2010.04.254

    Article  PubMed  Google Scholar 

  • Drezner-Levy T, Shafir S (2007) Parameters of variable reward distributions that affect risk sensitivity of honey bees. J Exp Biol 210(2):269–277

    Article  PubMed  Google Scholar 

  • Drezner-Levy T, Smith BH, Shafir S (2009) The effect of foraging specialization on various learning tasks in the honey bee (Apis mellifera). Behav Ecol Sociobiol 64(1):135–148. doi:10.1007/s00265-009-0829-z

    Article  Google Scholar 

  • Dukas R (2009) Evolutionary biology of limited attention. In: Tommasi L, Peterson MA (eds) Cognitive biology: evolutionary and developmental perspectives on mind, Brain and Behavior. The MIT Press, London, pp 147–281

    Chapter  Google Scholar 

  • Gallistel CR, Gelman R (1992) Preverbal and verbal counting and computation. Cognition 44(1–2):43–74. doi:10.1016/0010-0277(92)90050-r

    Article  PubMed  CAS  Google Scholar 

  • Gibson EJ (1969) Principles of perceptual learning and development. Appelton-Century-Crofts, New York

    Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(8):801–824. doi:10.1007/s00359-007-0235-9

    Article  PubMed  Google Scholar 

  • Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19(2):54–66. doi:10.1101/lm.024711.111

    Article  PubMed  Google Scholar 

  • Houston AI (1997) Natural selection and context-dependent values. Proc R Soc B Biol Sci 264:1539–1541

    Article  Google Scholar 

  • Huber J, Payne JW, Puto C (1982) Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J Consum Res 9:90–98

    Article  Google Scholar 

  • Kacelnik A (2006) Meanings of rationality. In: Hurley S, Nudds M (eds) Rational animals?. Oxford University Press, Oxford, pp 87–106

    Chapter  Google Scholar 

  • Kacelnik A, Bateson M (1996) Risky theories—the effects of variance on foraging decisions. Am Zool 36(4):402–434

    Google Scholar 

  • Kacelnik A, Bateson M (1997) Risk-sensitivity: crossroads for theories of decision-making. Trends Cog Sci 1(8):304–309

    Article  CAS  Google Scholar 

  • Killeen PR, Cate H, Tran T (1993) Scaling pigeons choice of feeds—bigger is better. J Exp Anal Behav 60(1):203–217. doi:10.1901/jeab.1993.60-203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Latty T, Beekman M (2011) Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences. Proc R Soc B Biol Sci 278(1703):307–312. doi:10.1098/rspb 2010.1045

    Article  Google Scholar 

  • Luce RD (1959) Individual choice behavior. Wiley, New York

    Google Scholar 

  • Luce RD (1977) The choice axiom after twenty years. J Math Psychol 15:215–233

    Article  Google Scholar 

  • Mackintosh NJ (1975) Theory of attention—variations in associability of stimuli with reinforcement. Psychol Rev 82(4):276–298. doi:10.1037/h0076778

    Article  Google Scholar 

  • Marsh B, Kacelnik A (2002) Framing effects and risky decisions in starlings. Proc Natl Acad Sci USA 99(5):3352–3355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Menzel R, Sandoz JC, Giurfa M (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J Neurosci Methods 211(1):159–167. doi:10.1016/j.jneumeth.2012.08.018

    Article  PubMed  Google Scholar 

  • Mayack C, Naug D (2011) A changing but not an absolute energy budget dictates risk-sensitive behaviour in the honeybee. Anim Behav 82(3):595–600. doi:10.1016/j.anbehav.2011.06.022

    Article  Google Scholar 

  • Monteiro T, Vasconcelos M, Kacelnik A (2013) Starlings uphold principles of economic rationality for delay and probability of reward. Proc R Soc B Biol Sci 280:1756. doi:10.1098/rspb.2012.2386

    Article  Google Scholar 

  • Morgan KV, Hurly TA, Bateson M, Asher L, Healy SD (2012) Context-dependent decisions among options varying in a single dimension. Behav Processes 89(2):115–120. doi:10.1016/j.beproc.2011.08.017

    Article  PubMed  Google Scholar 

  • Motulksy H, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. GraphPad Software Inc., San Diego

    Google Scholar 

  • Mundy ME, Honey RC, Dwyer DM (2007) Simultaneous presentation of similar stimuli produces perceptual learning in human picture processing. J Exp Psychol Animal Behav Process 33(2):124–138. doi:10.1037/0097-7403.33.2.124

    Article  CAS  Google Scholar 

  • Mundy ME, Honey RC, Dwyer DM (2009) Superior discrimination between similar stimuli after simultaneous exposure. Q J Exp Psych 62(1):18–25. doi:10.1080/17470210802240614

    Article  Google Scholar 

  • Nachev V, Thomson JD, Winter Y (2012) The psychophysics of sugar concentration discrimination and contrast evaluation in bumblebees. Anim Cogn. doi:10.1007/s10071-012-0582-y

    Google Scholar 

  • Nieder A, Diester I, Tudusciuc O (2006) Temporal and spatial enumeration processes in the primate parietal cortex. Science 313(5792):1431–1435. doi:10.1126/science.1130308

    Article  PubMed  CAS  Google Scholar 

  • Paldi N, Zilber S, Shafir S (2003) Associative olfactory learning of honeybees to differential rewards in multiple contexts—effect of odor component and mixture similarity. J Chem Ecol 29(11):2515–2538

    Article  PubMed  CAS  Google Scholar 

  • Perez SM, Waddington KD (1996) Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am Zool 36(4):435–446

    Google Scholar 

  • Pompilio L, Kacelnik A (2010) Context-dependent utility overrides absolute memory as a determinant of choice. Proc Natl Acad Sci USA 107(1):508–512. doi:10.1073/pnas.0907250107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931. doi:10.1006/anbe 1999.1242

    Article  PubMed  Google Scholar 

  • Scheiner R, Page RE, Erber J (2004) Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 35(2):133–142

    Article  Google Scholar 

  • Scheiner R, Kuritz-Kaiser A, Menzel R, Erber J (2005) Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learn Mem 12(6):626–635

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedikides C, Ariely D, Olsen N (1999) Contextual and procedural determinants of partner selection: of asymmetric dominance and prominence. Soc Cogn 17(2):118–139

    Article  Google Scholar 

  • Shafir S (1994) Intransitivity of preferences in honey bees: support for ‘comparative’ evaluation of foraging options. Anim Behav 48:55–67

    Article  Google Scholar 

  • Shafir E (ed) (2003) Preference, belief, and similarity: Selected writings of Amos Tversky. MIT Press, Cambridge, MA

    Google Scholar 

  • Shafir S (2011) Bee cognition and crop pollination: proven and potential applications. In: Seckbach J, Dubinsky Z (eds) All flesh is grass: plant-animal interrelationships, vol 16. Cellular origin and life in extreme habitats and astrobiology. Springer, Netherlands, pp 185–198

  • Shafir EB, Osherson DN, Smith EE (1989) An advantage model of choice. J Behav Decis Mak 2:1–23

    Article  Google Scholar 

  • Shafir S, Wiegmann DD, Smith BH, Real LA (1999) Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward. Anim Behav 57:1055–1061

    Article  PubMed  Google Scholar 

  • Shafir S, Waite TA, Smith BH (2002) Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behav Ecol Sociobiol 51(2):180–187

    Article  Google Scholar 

  • Shafir S, Bechar A, Weber EU (2003) Cognition-mediated coevolution—context-dependent evaluations and sensitivity of pollinators to variability in nectar rewards. Plant Syst Evol 238(1–4):195–209

    Google Scholar 

  • Shafir S, Menda G, Smith BH (2005) Caste-specific differences in risk sensitivity in honeybees, Apis mellifera. Anim Behav 69:859–868

    Article  Google Scholar 

  • Shafir S, Reich T, Tsur E, Erev I, Lotem A (2008) Perceptual accuracy and conflicting effects of certainty on risk-taking behaviour. Nature 453(7197):917–920

    Article  PubMed  CAS  Google Scholar 

  • Shapiro MS, Couvillon PA, Bitterman ME (2001) Quantitative tests of an associative theory of risk-sensitivity in honeybees. J Exp Biol 204(3):565–573

    PubMed  CAS  Google Scholar 

  • Smith BH (1996) The role of attention in learning about odorants. Biol Bull 191(1):76–83. doi:10.2307/1543065

    Article  PubMed  CAS  Google Scholar 

  • Smith BH, Abramson CI, Tobin TR (1991) Conditional withholding of proboscis extension in honeybees (Apis-Mellifera) during discriminative punishment. J Comp Psychol 105(4):345–356

    Article  PubMed  CAS  Google Scholar 

  • Stanovich KE (2013) Why humans are (sometimes) less rational than other animals: cognitive complexity and the axioms of rational choice. Think Reason 19(1):1–26. doi:10.1080/13546783.2012.713178

    Article  Google Scholar 

  • Thaler R (1980) Toward a positive theory of consumer choice. J Econ Behav Org 1(1):39–60. doi:10.1016/0167-2681(80)90051-7

    Article  Google Scholar 

  • Tokita M, Ishiguchi A (2012) Behavioral evidence for format-dependent processes in approximate numerosity representation. Psychon Bull Rev 19(2):285–293. doi:10.3758/s13423-011-0206-6

    Article  PubMed  Google Scholar 

  • Tversky A (1969) Intransitivity of preferences. Psychol Rev 76:31–48

    Article  Google Scholar 

  • Waddington KD (2001) Subjective evaluation and choice behavior by nectar- and pollen-collecting bees. In: Chittka L, Thompson JD (eds) Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge University Press, Cambridge, pp 41–60

    Chapter  Google Scholar 

  • Waddington KD, Gottlieb N (1990) Actual vs perceived profitability: a study of floral choice of honey bees. J Insect Behav 3(4):429–441

    Article  Google Scholar 

  • Weber EU, Shafir S, Blais AR (2004) Predicting risk sensitivity in humans and lower animals: risk as variance or coefficient of variation. Psychol Rev 111(2):430–445

    Article  PubMed  Google Scholar 

  • Wedell DH (1991) Distinguishing among models of contextually induced preference reversals. J Exp Psychol Learn Mem Cogn 17(4):767–778

    Article  Google Scholar 

  • Williams BA (1994) Reinforcement and choice. In: Mackintosh NJ (ed) Animal learning and cognition, 2nd edn. Academic Press, San Diego, pp 81–108

    Chapter  Google Scholar 

  • Zentall TR, Riley DA (2000) Selective attention in animal discrimination learning. J Gen Psychol 127(1):45–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this research project was obtained from the Israel Science Foundation. We thank two anonymous referees for their thorough reviews, and Harmen Hendriksma and the associate editor, Ken Cheng, for advice on improving the statistical analyses.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Treatment of the experimental animals complied with Israeli laws on animal care and experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharoni Shafir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafir, S., Yehonatan, L. Comparative evaluations of reward dimensions in honey bees: evidence from two-alternative forced choice proboscis-extension conditioning. Anim Cogn 17, 633–644 (2014). https://doi.org/10.1007/s10071-013-0694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-013-0694-z

Keywords

Navigation