Skip to main content
Log in

Ordinality and novel sequence learning in jackdaws

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

A hallmark of higher cognition is the flexible use of information. This requires an abstract representation of the information. In sequence learning, ordinal position knowledge is seen as a more versatile representation when compared to chaining. Here, we assessed which of these mental representations is the most natural and most dominant in jackdaws. Two jackdaws (Corvus monedula) were trained on 14 separate three-item sequences (triplets), made up of abstract images. On each trial, the three items of one triplet were presented in fixed order. The images represented either the first, second or third ordinal position. Test stimuli consisted of the three images and a distractor image that was chosen randomly from the remaining sequences. We rewarded pecking in the correct order to the images belonging to the same sequence. The most common error the birds made was to peck at a distractor item from the same ordinal position. To look at how versatile the jackdaws’ ordinal knowledge was, we replaced a familiar item with a novel item in some sequences. We then created novel sequences with these items, which the birds completed correctly. It appears, then, that jackdaws have a concept of ordinal position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biegler R (2006) Functional considerations in animal navigation: how do you use what you know? In: Brown MF, Cook RG (eds) Animal spatial cognition: comparative, neural and computational approaches. [On-line]. Available: www.pigeon.psy.tufts.edu/biegler/

  • Bonanni R, Natoli E, Cafazzo S, Valsecchi P (2011) Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Anim Cogn 14(1):103–115

    Google Scholar 

  • Bond AB, Kamil AC, Balda RP (2003) Social complexity and transitive inference in corvids. Anim Behav 65:479–487

    Article  Google Scholar 

  • Brown MA, Sharp PE (1995) Simulation of spatial learning in the Morris water maze by a neural network model of the hippocampus and nucleus accumbens. Hippocampus 5(3):171–188

    Article  PubMed  CAS  Google Scholar 

  • Bures J, Buresova O, Nerad L (1992) Can rats solve a simple version of the travelling salesman problem? Behav Brain Res 52:133–142

    Article  PubMed  CAS  Google Scholar 

  • Cook RG, Brown MF, Riley DA (1985) Flexible memory processing by rats—use of prospective and retrospective information in the radial maze. J Exp Psychol Anim Behav Process 11(3):453–469. doi:10.1037/0097-7403.11.3.453

    Article  PubMed  CAS  Google Scholar 

  • Cramer AE, Gallistel CR (1997) Vervet monkeys as travelling salesmen. Nature 387:464

    Article  PubMed  CAS  Google Scholar 

  • Crystal JD (2003) Nonlinearities in sensitivity to time: implications for oscillator-based representations of interval and circadian clocks. In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, FL, pp 61–75

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711

    Article  PubMed  CAS  Google Scholar 

  • Desmond JE, Moore JW (1988) Adaptive timing in neural networks: the conditioned response. Biol Cybern 58:405–415

    Article  PubMed  CAS  Google Scholar 

  • Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location. J Neurosci 28(27):6858–6871

    Article  PubMed  CAS  Google Scholar 

  • Honey RC, Hall G (1989) Acquired equivalence and distinctiveness of cues. J Exp Psychol Anim Behav Process 15(4):338–346

    Article  PubMed  CAS  Google Scholar 

  • Honey RC, Ward-Robinson J (2002) Acquired equivalence and distinctiveness of cues: I. Exploring a neural network approach. J Exp Psychol Anim Behav Process 28(4):378–387

    Article  PubMed  CAS  Google Scholar 

  • Kaminski J, Call J, Fischer J (2004) Word learning in a domestic dog: evidence for “fast mapping”. Science 304(5677):1682–1683

    Article  PubMed  CAS  Google Scholar 

  • Lea SEG (1984) In what sense do pigeons learn concepts? In: Roitblat HL, Bever TG, Terrace HS (eds) Animal cognition. Erlbaum, Hillsdale, N.J., pp 263–276

    Google Scholar 

  • Love BC (2003) Concept learning. In: Nadel L (ed) Encyclopedia of cognitive science, vol 1. Nature Publications, London, pp 646–652

  • Mackintosh NJ (2000) Abstraction and discrimination. In: Heyes C, Huber L (eds) The evolution of cognition. MIT Press, Cambridge

    Google Scholar 

  • Muller RU, Stead M, Pach J (1996) The hippocampus as a cognitive graph. J Gen Physiol 107:663–694

    Article  PubMed  CAS  Google Scholar 

  • Orlov T, Yakovlev V, Hochstein S, Zohary E (2000) Macaque monkeys categorize images by their ordinal number. Nature 404(6773):77–80

    Article  PubMed  CAS  Google Scholar 

  • Orlov T, Ami DJ, Yakovlev V, Zohary E, Hochstein S (2006) Memory of ordinal number categories in macaque monkeys. J Cogn Neurosci 18(3):399–417

    Article  PubMed  Google Scholar 

  • Paz-y-Mino G, Bond AB, Kamil AC, Balda RP (2004) Pinyon jays use transitive inference to predict social dominance. Nature 430(7001):778–781

    Article  Google Scholar 

  • Pepperberg IM (1994) Evidence for numerical competence in an African Grey parrot (Psittacus erithacus). J Comp Psychol 108(1):36–44

    Article  Google Scholar 

  • Pepperberg IM (2006a) Grey parrot (Psittacus erithacus) numerical abilities: addition and further experiments on a zero-like concept. J Comp Psychol 120(1):1–11

    Article  PubMed  Google Scholar 

  • Pepperberg IM (2006b) Ordinality and inferential ability of a Grey parrot (Psittacus erithacus). J Comp Psychol 120(3):205–216

    Article  PubMed  Google Scholar 

  • Pepperberg IM (2006c) Grey parrot numerical competence: a review. Anim Cogn 9:377–391

    Article  PubMed  Google Scholar 

  • Railton RCR, Foster TM, Temple W (2010) Transfer of stimulus control from a TFT to CRT screen. Behav Process 85(2):111–115

    Article  Google Scholar 

  • Ratterman M, Spector L, Grafman J, Levin H, Harward H (2001) Partial and total-order planning: evidence from normal and prefrontally damaged populations. Cogn Sci 25:941–975

    Article  Google Scholar 

  • Rescorla R (1991) Associative relations in instrumental learning: the eighteenth Bartlett memorial lecture. Q J Exp Psychol 43B:1–23

    Google Scholar 

  • Reznikova Z, Ryabko B (2011) Numerical competence in animals, with an insight from ants. Behaviour 148(4):405–434

    Article  Google Scholar 

  • Röell A (1978) Social behaviour of the jackdaw, Corvus monedula, in relation to its niche. Behaviour 64(1–2):1–124

    Article  Google Scholar 

  • Roitblat HL (1980) Codes and coding processes in pigeon short-term memory. Anim Learn Behav 8(3):341–351

    Article  Google Scholar 

  • Saleh N, Chittka L (2007) Traplining in bumblebees (Bomus impatiens): a foraging strategy’s ontogeny and the importance os spatial reference memory in short-range foraging. Oecologia 151:719–730

    Article  PubMed  Google Scholar 

  • Scarf D, Colombo M (2008) Representation of serial order: a comparative analysis of humans, monkeys and pigeons. Brain Res Bull 76:307–312

    Article  PubMed  Google Scholar 

  • Schloegl C (2011) What you see is what you get—reloaded: can jackdaws (corvus monedula) find hidden food through exclusion? J Comp Psychol 125(2):162–174

    Article  PubMed  Google Scholar 

  • Schloegl C, Dierks A, Gajdon G K, Huber L, Kotrschal K, Bugnyar T (2009) What you see is what you get? Exclusion performances in ravens and keas. PLoS one 4(8):e6368. doi:10.1371/journal.pone.0006368

  • Terrace HS (1986) A nonverbal organisms knowledge of ordinal position in a serial-learning task. J Exp Psychol Anim Behav Process 12(3):203–214

    Article  Google Scholar 

  • Terrace HS (2005) The simultaneous chain: a new approach to serial learning. Trends Cogn Sci 9(4):202–210

    Article  PubMed  Google Scholar 

  • Terrace HS, Chen SF, Jaswal V (1996) Recall of three-item sequences by pigeons. Anim Learn Behav 24(2):193–205

    Article  Google Scholar 

  • Vaughan W (1988) Formation of equivalence sets in pigeons. J Exp Psychol Anim Behav Process 14:36–42

    Article  Google Scholar 

  • Wilson B, Mackintosh NJ, Boakes RA (1985) Transfer of relational rules in matching and oddity learning by pigeons and corvids. Q J Exp Psychol B Comp Physiol Psychol 37(4):313–332

    Google Scholar 

  • Young RK (1962) Tests of 3 hypotheses about effective stimulus in serial learning. J Exp Psychol 63(3):307–313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Healy, T. Bugnyar, L. Kennair and U. Tölch for comments on an earlier draft. We especially thank S. Healy for advice on language and comments on complexity of cognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pfuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfuhl, G., Biegler, R. Ordinality and novel sequence learning in jackdaws. Anim Cogn 15, 833–849 (2012). https://doi.org/10.1007/s10071-012-0509-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0509-7

Keywords

Navigation