Skip to main content
Log in

The role of numerical competence in a specialized predatory strategy of an araneophagic spider

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Although a wide range of vertebrates have been considered in research on numerical competence, little is known about the role of number-related decisions in the predatory strategies of invertebrates. Here, we investigate how numerical competence is expressed in a highly specialized predatory strategy adopted by the small juveniles of Portia africana when practicing communal predation, with the prey being another spider, Oecobius amboseli. Two or more P. africana juveniles sometimes settle by the same oecobiid nest and then share the meal after one individual captures the oecobiid. Experiments were designed to clarify how these predators use number-related cues in conjunction with non-numerical cues when deciding whether to settle at a nest. We used lures (dead spiders positioned in lifelike posture) arranged in a series of 24 different scenes defined by the type, configuration and especially number of lures. On the whole, our findings suggest that P. africana juveniles base settling decisions on the specific number of already settled conspecific juveniles at the nest and express a preference for settling when the number is one instead of zero, two or three. By varying the size of the already settled juveniles and their positions around the nest, we show that factors related to continuous variables and stimulus configuration are unlikely explanations for our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrillo C, Dadda M, Serena G (2008) Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Anim Cogn 11:495–503

    Article  PubMed  Google Scholar 

  • Anderson DE, Vogel EK, Awh E (2011) Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J Neurosci 31:1128–1138

    Article  PubMed  CAS  Google Scholar 

  • Awh E, Barton B, Vogel EK (2007) Visual working memory represents a fixed number of items regardless of complexity. Psychol Sci 18:622–628

    Article  PubMed  Google Scholar 

  • Baddeley A (1986) Working memory. Oxford University Press, Oxford

    Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839

    Article  PubMed  CAS  Google Scholar 

  • Benson-Amram S, Heinen VK, Dryer SL, Holekamp KE (2011) Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Anim Behav 82:743–752

    Article  Google Scholar 

  • Beran MJ (2001) Summation and numerousness judgments of sequentially presented sets of items by chimpanzees (Pan troglodytes). J Comp Psychol 115:181–191

    Article  PubMed  CAS  Google Scholar 

  • Beran MJ (2008) Capuchin monkeys (Cebus apella) succeed in a test of quantity conservation. Anim Cogn 11:109–116

    Article  PubMed  Google Scholar 

  • Beran MJ (2010) Chimpanzees (Pan troglodytes) accurately compare poured liquid quantities. Anim Cogn 13:641–649

    Article  PubMed  Google Scholar 

  • Beran MJ, Evans TA, Harris EH (2008) Perception of food amounts by chimpanzees based on the number, size, contour length and visibility of items. Anim Behav 75:1793–1802

    Article  PubMed  Google Scholar 

  • Boysen ST, Berntson GG (1989) Numerical competence in a chimpanzee (Pan troglodytes). J Comp Psychol 103:23–31

    Article  PubMed  CAS  Google Scholar 

  • Boysen ST, Berntson GG (1995) Responses to quantity: perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). J Exp Psychol Anim Behav Process 21:82–86

    Article  PubMed  CAS  Google Scholar 

  • Brady TF, Konkle T, Alvarez GA (2011) A review of visual memory capacity: beyond individual items and toward structured representations. J Vis 11:1–34

    Article  Google Scholar 

  • Brannon EM (2002) The development of ordinal numerical knowledge in infancy. Cognition 83:223–240

    Article  PubMed  Google Scholar 

  • Brannon EM (2006) The representation of numerical magnitude. Curr Opin Neurobiol 16:222–229

    Article  PubMed  CAS  Google Scholar 

  • Brannon EM, Abbott S, Lutz DJ (2004) Number bias for the discrimination of large visual sets in infancy. Cognition 93:B59–B68

    Article  PubMed  Google Scholar 

  • Breukelaar JWC, Dalrymple-Alford JC (1998) Timing ability and numerical competence in rats. J Exp Psychol 24:84–97

    CAS  Google Scholar 

  • Burr DC, Ross J (2008) A visual sense of number. Curr Biol 18:425–428

    Article  PubMed  CAS  Google Scholar 

  • Burr DC, Turi M, Anobile G (2010) Subitizing but not estimation of numerosity requires attentional resources. J Vis 10(6):1–10

    Article  Google Scholar 

  • Butterworth B (1999) A head for figures. Science 284:928–929

    Article  PubMed  CAS  Google Scholar 

  • Butterworth B (2008) Numerosity perception: how many speckles on the hen? Curr Biol 16:R388–R389

    Article  CAS  Google Scholar 

  • Cantlon JF, Brannon EM (2007) Basic math in monkeys and college students. PLoS ONE 5:e328

    Google Scholar 

  • Carazo P, Font E, Forteza-Behrendt E (2009) Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate? Anim Cogn 12:463–470

    Article  PubMed  CAS  Google Scholar 

  • Carey S (1998) Knowledge of number: its evolution and ontogeny. Science 282:641–642

    Article  PubMed  CAS  Google Scholar 

  • Carey S (2001) Cognitive foundations of arithmetic: evolution and ontogenesis. Mind Lang 16:37–55

    Google Scholar 

  • Castelli F, Glaser DE, Butterworth B (2006) Discrete and analogue quantity processing in the parietal lobe: a functional MRI study. Proc Nat Acad Sci USA 103:4693–4698

    Article  PubMed  CAS  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Geiger K (1995) Can honey-bees count landmarks? Anim Behav 49:159–164

    Article  Google Scholar 

  • Church RM, Broadbent HA (1990) Alternative representations of time, number, and rate. Cognition 37:55–81

    Article  PubMed  CAS  Google Scholar 

  • Clearfield MW, Mix KS (1999) Number versus contour length in infants’ discrimination of small visual sets. Psychol Sci 10:408–411

    Article  Google Scholar 

  • Cowan N (1998) Visual and auditory working memory capacity. Trends Cogn Sci 2:77–78

    Article  PubMed  CAS  Google Scholar 

  • Cowan N (2000) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 24:87–185

    Article  Google Scholar 

  • Cowan N (2010) The magical mystery four: how is working memory capacity limited, and why? Curr Dir Psychol Sci 19:51–57

    Article  PubMed  Google Scholar 

  • Curio E (1976) The ethology of predation. Springer, Berlin

    Google Scholar 

  • Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683–689

    Article  PubMed  Google Scholar 

  • Dadda M, Piffer L, Agrillo C, Biazza A (2009) Spontaneous number representation in mosquitofish. Cognition 112:343–348

    Article  PubMed  Google Scholar 

  • Davis H, Memmott J (1982) Counting behavior in animals: a critical evaluation. Psychol Bull 92:547–571

    Article  Google Scholar 

  • Davis H, MacKenzie KA, Morrison S (1989) Numerical discrimination by rats (Rattus norvegicus) using body and vibrissal touch. J Comp Psychol 103:45–53

    Article  Google Scholar 

  • Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S (2001) Precis of the number sense. Mind Lang 16:16–36

    Google Scholar 

  • Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8:307–314

    Article  PubMed  Google Scholar 

  • Flombaum JI, Junge JA, Hauser MD (2005) Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition 97:315–325

    Article  PubMed  Google Scholar 

  • Fougnie D, Marois R (2011) Distinct capacity limits for attention and working memory. Psychol Sci 17:526–534

    Article  Google Scholar 

  • Franks NR, Dornhaus A, Metherell BG, Nelson TR, Lanfear SAJ, Symes WS (2006) Not everything that counts can be counted: ants use multiple metrics for a single nest trait. Proc R Soc B 273:165–169

    Article  PubMed  Google Scholar 

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4:59–65

    Article  PubMed  Google Scholar 

  • Gelman R, Gallistel CR (1978) The child’s understanding of number. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Giaquinto M (2001) What cognitive systems underlie arithmetical abilities? Mind Lang 16:56–68

    Google Scholar 

  • Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang S (2009) Number-based visual generalisation in the honeybee. PLoS ONE 4(1):e4263

    Article  PubMed  CAS  Google Scholar 

  • Hager MC, Helfman GS (1991) Safety in numbers: shoal size choice by minnows under predatory threat. Behav Ecol Sociobiol 29:271–276

    Article  Google Scholar 

  • Hanus D, Call J (2007) Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus): the effect of presenting whole sets versus item-by-item. J Comp Psychol 121:241–249

    Article  PubMed  Google Scholar 

  • Harland DP, Jackson RR (2001) Prey classification by Portia fimbriata, a salticid spider that specializes at preying on other salticids: species that elicit cryptic stalking. J Zool 255:445–460

    Article  Google Scholar 

  • Haun DBM, Jordan FM, Vallortigara G, Clayton NS (2010) Origins of spatial, temporal and numerical cognition: insights from comparative psychology. Trends Cog Sci 14:552–560

    Article  Google Scholar 

  • Hauser MD, Carey S (2003) Spontaneous representations of small numbers of objects by rhesus macaques: examination of content and format. Cognit Psychol 47:367–491

    Article  PubMed  Google Scholar 

  • Hoare DJ, Couzin ID, Godin GJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164

    Article  Google Scholar 

  • Hunt S, Low J, Burns KC (2008) Adaptive numerical competency in a food-hoarding songbird. Proc R Soc B 275:2373–2379

    Article  PubMed  Google Scholar 

  • Hurewitz F, Gelman R, Schnitzer B (2006) Sometimes area counts more than number. Proc Nat Acad Sci USA 103:19599–19604

    Article  PubMed  CAS  Google Scholar 

  • Jackson RR, Cross FR (2011) Spider cognition. Adv Insect Physiol 41:115–174

    Article  Google Scholar 

  • Jackson RR, Nelson XJ (2012) Attending to detail by communal spider-eating spiders. Anim Cogn (in press). doi:10.1007/s10071-012-0469-y

  • Jackson RR, Pollard SD, Salm K (2008) Observations of Portia africana, an araneophagic jumping spider, living together and sharing prey. N Z J Zool 35:237–242

    Article  Google Scholar 

  • Jakob EM, Christa D, Skow CD, Long S (2011) Plasticity, learning and cognition. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, New York, pp 307–347

    Google Scholar 

  • Kahneman D, Treisman A, Gibbs BJ (1992) The reviewing of object files: object-specific integration of information. Cognit Psychol 24:175–219

    Article  PubMed  CAS  Google Scholar 

  • Kaufman EL, Lord MW, Reese TW, Volkmann J (1949) The discrimination of visual number. Am J Psychol 62:498–525

    Article  PubMed  CAS  Google Scholar 

  • Kitchen DM (2006) Alpha male black howler monkey responses to loud calls: effect of numeric odds, male companion behaviour and reproductive investment. Anim Behav 67:125–139

    Article  Google Scholar 

  • Kobayashi T, Hiraki K, Mugitani R, Hasegawa T (2004) Baby arithmetic: one object plus one tone. Cognition 91:B23–B34

    Article  PubMed  Google Scholar 

  • Krusche P, Uller C, Dicke U (2010) Quantity discrimination in salamanders. J Exp Biol 213:1822–1828

    Article  PubMed  Google Scholar 

  • Le Corre M, Carey S (2008) Why the verbal counting principles are constructed out of representations of small sets of individuals: a reply to Gallistel. Cognition 107:650–662

    Article  PubMed  Google Scholar 

  • Lipton JS, Spelke ES (2003) Origins of number sense: large-number discrimination in human infants. Psychol Sci 14:396–401

    Article  PubMed  Google Scholar 

  • Lyon BE (2003) Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422:495–499

    Article  PubMed  CAS  Google Scholar 

  • Mandler G, Shebo BJ (1982) Subitizing: an analysis of its conceptual processes. J Exp Psychol 111:1–22

    CAS  Google Scholar 

  • Matsuzawa T (1985) Use of numbers by a chimpanzee. Nature 315:57–59

    Article  PubMed  CAS  Google Scholar 

  • McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of lions, Panthera leo. Anim Behav 47:379–387

    Article  Google Scholar 

  • McCrink K, Wynn K (2004) Large-number addition and subtraction by 9-month-old infants. Psychol Sci 15:776–781

    Article  PubMed  Google Scholar 

  • Meck WH, Church RM (1983) A mode control model of counting and timing processes. J Exp Psychol Anim Behav Process 9:320–334

    Article  PubMed  CAS  Google Scholar 

  • Nelson XJ, Jackson RR (2011) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, New York, pp 31–56

    Google Scholar 

  • Owen AM (2004) Working memory: imaging the magic number four. Curr Biol 14:R573–R574

    Article  PubMed  CAS  Google Scholar 

  • Pepperberg IM (2006) Grey parrot numerical competence: a review. Anim Cogn 9:377–391

    Article  PubMed  Google Scholar 

  • Piazza M, Mechelli A, Butterworth B, Price CJ (2002) Are subitizing and counting implemented as separate or functionally overlapping processes? NeuroImage 15:435–446

    Article  PubMed  Google Scholar 

  • Piazza M, Fumarola A, Chinello A, Melcher D (2011) Subitizing reflects visuo-spatial object individuation capacity. Cognition 121:147–153

    Article  PubMed  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154

    Article  Google Scholar 

  • Pylyshyn ZW (1989) The role of location indexes in spatial perception: a sketch of the FINST spatial-index model. Cognition 32:65–97

    Article  PubMed  CAS  Google Scholar 

  • Pylyshyn ZW (2001) Visual indexes, preconceptual objects, and situated vision. Cognition 80:127–158

    Article  PubMed  CAS  Google Scholar 

  • Railo H, Koivisto M, Revonsuo A, Hannula MM (2008) The role of attention in subitizing. Cognition 107:82–104

    Article  PubMed  Google Scholar 

  • Reznikova Z, Ryabko B (2011) Numerical competence in animals, with an insight from ants. Behaviour 148:405–434

    Article  Google Scholar 

  • Riggs KJ, Ferrand L, Lancelin D, Fryziel L, Dumur G (2006) Subitizing in tactile perception. Psychol Sci 17:271–272

    Article  PubMed  Google Scholar 

  • Rodríguez RL, Gamboa E (2000) Memory of captured prey in three web spiders (Araneae: Araneidae, Linyphiidae, Tetragnathidae). Anim Cogn 3:91–97

    Article  Google Scholar 

  • Rodríguez RL, Gloudeman MD (2011) Estimating the repeatability of memories of captured prey formed by Frontinella communis spiders (Araneae: Linyphiidae). Anim Cogn 14:675–682

    Article  PubMed  Google Scholar 

  • Rosch E (1975) Cognitive representations of semantic categories. J Exp Psychol 104:192–233

    Google Scholar 

  • Rosch E, Mervis CB, Greay WD, Jonhson DM, Boyes-Braem P (1976) Basic objects in natural categories. Cognit Psychol 8:382–429

    Article  Google Scholar 

  • Schmitt V, Fischer J (2011) Representational format determines numerical competence in monkeys. Nat Commun 2:257. doi:10.1038/ncomms1262

    Article  PubMed  CAS  Google Scholar 

  • Seron X, Pesenti M (2001) The number sense theory needs more empirical evidence. Mind Lang 16:76–88

    Google Scholar 

  • Shettleworth SJ (2009) Cognition, evolution, and behaviour, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Slaughter V, Itakura S, Kutsuki A, Siegal M (2011) Learning to count begins in infancy: evidence from 18 month olds’ visual preferences. Proc R Soc B 278:2979–2984

    Article  PubMed  Google Scholar 

  • Starkey P, Spelke ES, Gelman R (1983) Detection of intermodal numerical correspondences by human infants. Science 222:179–181

    Article  PubMed  CAS  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Tardif SD, Layne DG, Smucny DA (2002) Can marmoset mothers count to three? Effect of litter size on mother-infant interactions. Ethology 108:825–836

    Article  Google Scholar 

  • Terrell DF, Thomas RK (1990) Number-related discrimination and summation by squirrel monkeys (Saimiri sciureus sciureus and S. boliviensus boliviensus) on the basis of the number of sides of polygons. J Comp Psychol 104:238–247

    Article  PubMed  CAS  Google Scholar 

  • Thomas RK, Simmons LW (2010) Cuticular hydrocarbons influence female attractiveness to males in the Australian field cricket, Teleogryllus oceanicus. J Evol Biol 23:707–714

    Article  PubMed  Google Scholar 

  • Tomonaga M (2008) Relative numerosity discrimination by chimpanzees (Pan troglodytes): evidence for approximate numerical representations. Anim Cogn 11:43–57

    Article  PubMed  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature integration theory of attention. Cogn Psychol 12:97–136

    Article  PubMed  CAS  Google Scholar 

  • Trick LM (2005) The role of working memory in spatial enumeration: patterns of selective interference in subitizing and counting. Psychon Bull Rev 12:675–681

    Article  PubMed  Google Scholar 

  • Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol Rev 101:80–102

    Article  PubMed  CAS  Google Scholar 

  • Uller C, Hauser MD, Carey S (2001) Spontaneous representation of number in cotton-top tamarins. J Comp Psychol 115:1–10

    Article  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in a species of basal vertebrate. Anim Cogn 6:105–112

    PubMed  Google Scholar 

  • Wesley F (1961) The number concept: a phylogenetic review. Psychol Bull 53:420–428

    Article  Google Scholar 

  • Wood JN, Hauser MC, Glynn DD, Barner D (2007) Free-ranging rhesus monkeys spontaneously individuate and enumerate small numbers of non-solid portions. Cognition 106:207–221

    Article  PubMed  Google Scholar 

  • Wynn K (1992) Addition and subtraction by human infants. Nature 358:749–750

    Article  PubMed  CAS  Google Scholar 

  • Wynn K (1998) Psychological foundations of number: numerical competence in human infants. Trends Cogn Sci 2:296–303

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chun MM (2009) Selecting and perceiving multiple visual objects. Trends Cogn Sci 13:167–174

    Article  PubMed  Google Scholar 

  • Xu Y, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74:B1–B11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Godfrey Otieno Sune, Stephen Aluoch and Jane Atieno Obonyo provided invaluable technical assistance. We acknowledge financial support from the National Geographic Society (RRJ), the Royal Society of New Zealand (Marsden Fund; RRJ; James Cook Fellowship, RRJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximena J. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, X.J., Jackson, R.R. The role of numerical competence in a specialized predatory strategy of an araneophagic spider. Anim Cogn 15, 699–710 (2012). https://doi.org/10.1007/s10071-012-0498-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0498-6

Keywords

Navigation