Skip to main content
Log in

Associative memory or algorithmic search: a comparative study on learning strategies of bats and shrews

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Two common strategies for successful foraging are learning to associate specific sensory cues with patches of prey (“associative learning”) and using set decision-making rules to systematically scan for prey (“algorithmic search”). We investigated whether an animal’s life history affects which of these two foraging strategies it is likely to use. Natterer’s bats (Myotis nattereri) have slow life-history traits and we predicted they would be more likely to use associative learning. Common shrews (Sorex araneus) have fast life-history traits and we predicted that they would rely more heavily on routine-based search. Apart from their marked differences in life-history traits, these two mammals are similar in body size, brain weight, habitat, and diet. We assessed foraging strategy, associative learning ability, and retention time with a four-arm maze; one arm contained a food reward and was marked with four sensory stimuli. Bats and shrews differed significantly in their foraging strategies. Most bats learned to associate the sensory stimuli with the reward and remembered this association over time. Most shrews searched the maze using consistent decision-making rules, but did not learn or remember the association. We discuss these results in terms of life-history traits and other key differences between these species. Our results suggest a link between an animal’s life-history strategy and its use of associative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altenbach JS (1979) Locomotor morphology of the vampire bat, Desmodus rotundus. Spec Publ Am Soc Mammal 6:1–137

    Google Scholar 

  • Anjum F, Turni H, Mulder PGH, van der Burg J, Brecht M (2006) Tactile guidance of prey capture in Etruscan shrews. Proc Natl Acad Sci USA 103:16544–16549

    Article  PubMed  CAS  Google Scholar 

  • Austad SN, Fischer KE (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J Gerontol 46:B47–B53

    PubMed  CAS  Google Scholar 

  • Barclay RMR, Harder LD (2003) Life histories of bats: life in the slow lane. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 209–253

    Google Scholar 

  • Baron G, Stephan H, Frahm HD (1996) Comparative neurobiology in Chiroptera. Birkhäuser, Basel

    Google Scholar 

  • Barton RA, Dunbar RIM (1997) Evolution of the social brain. In: Byrne RW, Whiten A (eds) Machiavellian intelligence II: extensions and evaluations. Cambridge University Press, Cambridge, pp 240–263

    Chapter  Google Scholar 

  • Bennet PM, Harvey PH (1988) How fecundity balances mortality in birds. Nature 333:216

    Article  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    Article  PubMed  Google Scholar 

  • Biro PA, Abrahams MV, Post JR, Parkinson EA (2006) Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J Anim Ecol 75:1165–1171

    Article  PubMed  Google Scholar 

  • Brown CB, Braithwaite VA (2005) Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav Ecol 16:482–487

    Article  Google Scholar 

  • Brydges NM, Heathcote RJP, Braithwaite VA (2008) Habitat stability and predation pressure influence learning and memory in populations of three-spined sticklebacks. Anim Behav 2008:935–942

    Article  Google Scholar 

  • Careau V, Bininda-Emonds ORP, Thomas DW, Réale D, Humphries MM (2009) Exploration strategies map along fast-slow metabolic and life-history continua in muroid rodents. Funct Ecol 23:150–156

    Article  Google Scholar 

  • Carter GG, Ratcliffe JM, Galef BG Jr (2010) Flower bats (Glossophaga soricina) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS ONE 5:e10808

    Article  PubMed  Google Scholar 

  • Churchfield S (1980) Subterranean foraging and burrowing activity of the Common shrew Sorex araneus. Acta Theriol 25:451–460

    Google Scholar 

  • Churchfield S (1990) The natural history of shrews. Comstock, Ithaca, NY

    Google Scholar 

  • Costanzo MS, Bennet NC, Lutermann H (2009) Spatial learning and memory in African mole-rats: the role of sociality and sex. Physiol Behav 96:128–134

    Article  PubMed  CAS  Google Scholar 

  • Czech NU, Klauer G, Dehnhardt G, Siemers BM (2008) Fringe for foraging? Histology of the bristle-like hairs on the tail membrane of the gleaning bat, Myotis nattereri. Acta Chiropterol 10:303–311

    Article  Google Scholar 

  • Dietrich CE, Dodt E (1970) Structural and some physiological findings on the retina of the bat Myotis myotis. In: Wirth A (ed) Symposium on electroretinography. Pisa, Italy, pp 120–132

    Google Scholar 

  • Dietz C, von Helversen O, Nill D (2009) Bats of Britain. Europe and Northwest Africa. A & C Black Publishers, London

    Google Scholar 

  • Driessens T, Siemers BM (2010) Cave-dwelling bats do not avoid TMT and 2-PT—components of predator odour that induce fear in other small mammals. J Exp Biol 213:2453–2460

    Article  PubMed  Google Scholar 

  • Dukas R, Real LA (1991) Learning foraging tasks by bees: a comparison between social and solitary species. Anim Behav 42:269–276

    Article  Google Scholar 

  • Dunbar RIM (1992) Neocortex size as a constraint on group size in primates. J Human Evol 22:469–493

    Article  Google Scholar 

  • Dunbar RIM, Bever J (1998) Neocortex size predicts group size in carnivores and some insectivores. Ethology 104:695–708

    Article  Google Scholar 

  • Edney EB, Gill RW (1968) Evolution of senescence and specific longevity. Nature 220:281–282

    Article  PubMed  CAS  Google Scholar 

  • Fenton MB, Rautenbach IL, Smith SE, Swanepoel CM, Grosell J, van Jaarsveld J (1994) Raptors and bats: threats and opportunities. Anim Behav 48:9–18

    Article  Google Scholar 

  • Fons R, Stephan H, Baron G (1984) Brains of Soricidae.1. Encephalization and macromorphology, with special reference to Suncus etruscus. Zeitschrift Fur Zoologische Systematik Und Evolutionsforschung 22:145–158

    Article  Google Scholar 

  • Harvey PH, Zammuto RM (1985) Patterns of mortality and age at first reproduction in natural populations of mammals. Nature 315:319–320

    Article  PubMed  CAS  Google Scholar 

  • Haupt M, Eccard J, Winter Y (2010) Does spatial learning ability of common voles (Microtus arvalis) and bank voles (Myodes glareolus) constrain foraging efficiency? Anim Cogn 13:783–791

    Article  PubMed  Google Scholar 

  • Holmes DJ, Austad SN (1994) Fly now, die later: life-history correlates of gliding and flying in mammals. J Mammal 75:224–226

    Article  Google Scholar 

  • Jones G, Webb PI, Sedgeley JA, O’Donnell CFJ (2003) Mysterious Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. J Exp Biol 206:4209–4216

    Article  PubMed  Google Scholar 

  • Kerth G (2008) Causes and consequences of sociality in bats. Bioscience 58:737–746

    Article  Google Scholar 

  • Kleiber M (1961) The fire of life: an introduction to animal energetics. Krieger, Huntington, NY

    Google Scholar 

  • Köhler D (1993) On the learning of the position of underwater food sources by Neomys fodiens (Mammalia, Soricidae). Zoologischer Anzeiger 231:73–81

    Google Scholar 

  • Kolb A (1961) Sinnesleistungen Einheimischer Fledermause Bei Der Nahrungssuche Und Nahrungsauswahl Auf Dem Boden Und in Der Luft. Zeitschrift Fur Vergleichende Physiologie 44:550–564

    Article  Google Scholar 

  • Konstantinov AI, Movchan VN (1985) Acoustic communication in different groups of mammals (in Russian). In: Sounds in the life of animals (in Russian). Leningrad, pp 63–81

  • Koselj K, Schnitzler H-U, Siemers BM (2011) Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proc R Soc B 278:3034–3041

    Article  PubMed  Google Scholar 

  • Maklakov AA, Kremer N, Arnqvist G (2007) The effects of age at mating on female life-history traits in a seed beetle. Behav Ecol 18:551–555

    Article  Google Scholar 

  • Micheli F (1997) Effects of experience on crab foraging in a mobile and a sedentary species. Anim Behav 53:1149–1159

    Article  PubMed  Google Scholar 

  • Millar JS, Hickling GJ (1991) Body size and the evolution of mammalian life histories. Funct Ecol 5:588–593

    Article  Google Scholar 

  • Page RA, Ryan MJ (2005) Flexibility in assessment of prey cues: frog-eating bats and frog calls. Proc R Soc B 272:841–847

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (2005) Gregariousness increases brain size in ungulates. Oecologia 145:41–52

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Shultz S, Dunbar RIM (2007) Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61:2811–2821

    Article  PubMed  Google Scholar 

  • Pierce GJ (1987) Search paths of foraging common shrews Sorex araneus. Anim Behav 35:1215–1224

    Article  Google Scholar 

  • Podlutsky AJ, Khritankov AM, Ovodov ND, Austad SN (2005) A new field record for bat longevity. J Gerontol A Biol Sci Med Sci 60:1366–1368

    Article  PubMed  Google Scholar 

  • Pomeroy D (1990) Why fly? The possible benefits for lower mortality. Biol J Linn Soc 40:53–65

    Article  Google Scholar 

  • Potting RPJ, Otten H, Vet LEM (1997) Absence of odour learning in the stemborer parasitoid Cotesia flavipes. Anim Behav 53:1211–1223

    Article  PubMed  Google Scholar 

  • Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool 220:417–437

    Article  Google Scholar 

  • Punzo F, Chavez S (2003) Effect of aging on spatial learning and running speed in the shrew (Cryptotis parva). J Mammal 84:1112–1120

    Article  Google Scholar 

  • Ratcliffe JM, ter Hofstede HM (2005) Roosts as information centres: social learning of food preferences in bats. Biol Lett 1:72–74

    Article  PubMed  Google Scholar 

  • Riskin DK, Parsons S, Schutt WAJ, Carter GG, Hermanson JW (2006) Terrestrial locomotion of the New Zealand short-tailed bat Mystacina tuberculata and the common vampire bat Desmodus rotundus. J Exp Biol 209:1725–1736

    Article  PubMed  Google Scholar 

  • Ruczynski I, Siemers BM (2010) Hibernation does not affect memory retention in bats. Biol Lett 7:153–155

    Article  PubMed  Google Scholar 

  • Rychlik L (1998) Evolution of social systems in shrews. In: Wójcik JM, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Polish Academy of Sciences, Bialowieza, pp 347–406

    Google Scholar 

  • Schürch R, Heg D (2010) Life history and behavioral type in the highly social cichlid Neolamprologus pulcher. Behav Ecol 21:588–598

    Article  Google Scholar 

  • Schutt WA Jr, Simmons NB (2006) Quadrupedal bats: form, function, and evolution. In: Zubaid A, McCracken GF, Kunz TH (eds) Functional and evolutionary ecology of bats. Oxford University Press, New York, pp 145–159

    Google Scholar 

  • Shettleworth SJ (1972) Constraints on learning. Advances in the Study of Behavior 4:1–68

    Article  Google Scholar 

  • Siemers BM (2001) Finding prey by associative learning in gleaning bats: experiments with Natterer’s bat Myotis nattereri. Acta Chiropterol 3:211–215

    Google Scholar 

  • Siemers BM, Schnitzler H-U (2000) Natterer’s bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behav Ecol Sociobiol 47:400–412

    Article  Google Scholar 

  • Siemers BM, Schnitzler H-U (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  PubMed  CAS  Google Scholar 

  • Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380

    Article  Google Scholar 

  • Siemers BM, Kaipf I, Schnitzler H-U (1999) The use of day roosts and foraging grounds by Natterer’s bats (Myotis nattereri Kuhl, 1818) from a colony in Southern Germany. Zeitschrift für Säugetierkunde 64:241–245

    Google Scholar 

  • Siemers BM, Schauermann G, Turni H, von Merten S (2009) Why do shrews twitter? Communication or simple echo-based orientation. Biol Lett 5:593–596

    Article  PubMed  Google Scholar 

  • Sigmund L (1985) Anatomy, morphometry and function of sense organs in shrews (Soricidae, Insectivora, Mammalia). Fortschritte der Zoologie 30:661–665

    Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Smith PG, Racey PA (2005) The itinerant natterer: physical and thermal characteristics of summer roosts of Myotis nattereri (Mammalia: Chiroptera). J Zool 266:171–180

    Article  Google Scholar 

  • Speakman JR (1991) Why do insectivorous bats in Britain not fly in daylight more frequently? Funct Ecol 5:518–524

    Article  Google Scholar 

  • Speakman JR (1995) Chiropteran nocturnality. Symposia of the Zoological Society of London 67:187–201

    Google Scholar 

  • Speakman JR, Thomas DW (2003) Physiological Ecology and Energetics of Bats. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 430–490

    Google Scholar 

  • Stamps JA (2007) Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol Lett 10:355–363

    Article  PubMed  Google Scholar 

  • Swift SM (2001) Growth rate and development in infant Natterer’s bats (Myotis nattereri) reared in a flight room. Acta Chiropterol 3:217–223

    Google Scholar 

  • Taylor JRE (1998) Evolution of energetic strategies in shrews. In: Wójcik JM, Wolsan M (eds) Evolution of Shrews. Mammal Research Institute, Polish Academy of Sciences, Bialowieza, pp 309–346

    Google Scholar 

  • Thiele J, Winter Y (2005) Hierarchical strategy for relocating food targets in flower bats: spatial memory versus cue-directed search. Anim Behav 69:315–327

    Article  Google Scholar 

  • von Helversen D, von Helversen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760

    Article  Google Scholar 

  • von Helversen D, von Helversen O (2003) Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. J Comp Physiol A 189:327–336

    Google Scholar 

  • von Merten S (2011) Spatial exploration and acoustic orientation in shrews. Eberhard Karls Universität Tübingen, Tübingen

    Google Scholar 

  • Winter Y, von Merten S, Kleindienst HU (2005) Visual landmark orientation by flying bats at a large-scale touch and walk screen for bats, birds and rodents. J Neurosci Meth 141:283–290

    Article  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Leonie Baier, Daniela A. Schmieder, and Heidi Müller for their help conducting experiments; to Renate Heckel for animal care; to Sándor Zsebők for his help with statistical analysis; and to John Christy, Paul A. Faure, Michaela Hau, and John M. Ratcliffe for their valuable comments on the manuscript. Special thanks to the Tübingen bat group, especially Ingrid Kaipf and Annette Denzinger, for hosting us (SvM) and giving us access to two M. nattereri in the Tübingen bat house. This study was funded by the Max Planck Society (BMS) and an Alexander von Humboldt Foundation Postdoctoral Research Fellowship (RAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. Page.

Additional information

Rachel A. Page and Sophie von Merten contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, R.A., von Merten, S. & Siemers, B.M. Associative memory or algorithmic search: a comparative study on learning strategies of bats and shrews. Anim Cogn 15, 495–504 (2012). https://doi.org/10.1007/s10071-012-0474-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0474-1

Keywords

Navigation