Skip to main content
Log in

Great apes use landmark cues over spatial relations to find hidden food

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

We investigated whether chimpanzees, bonobos, and orangutans encoded the location of a reward hidden underneath one of three identical cups in relation to (1) the other cups in the array—i.e., the relative position of the baited cup within the array; or (2) the landmarks surrounding the cups—e.g., the edge of the table. Apes witnessed the hiding of a food reward under one of three cups forming a straight line on a platform. After 30 s, they were allowed to search for the reward. In three different experiments, we varied the distance of the cups to the edge of the platform and the distance between the cups. Results showed that both manipulated variables affected apes’ retrieval accuracy. Subjects’ retrieval accuracy was higher for the outer cups compared with the Middle cup, especially if the outer cups were located next to the platform’s edge. Additionally, the larger the distance between the cups, the better performance became.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albiach-Serrano A, Call J, Barth J (2010) Great Apes track hidden objects after changes in the objects’ position and in subject’s orientation. Am J Primatol 72:349–359

    PubMed  Google Scholar 

  • Barth J, Call J (2006) Tracking the displacement of objects: a series of tasks with Great Apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and Young Children (Homo sapiens). J Exp Psychol Anim Behav Process 32:239–252

    Article  PubMed  Google Scholar 

  • Bennett ATD (1993) Spatial memory in a food storing corvid. I. Near tall landmarks are primarily used. J Comp Physiol A Sens Neural Behav Physiol 173:193–207

    Article  Google Scholar 

  • Beran MJ, Beran MM, Menzel CR (2005) Spatial memory and monitoring of hidden items through spatial displacements by Chimpanzees (Pan troglodytes). J Comp Psychol 119:14–22

    Article  PubMed  Google Scholar 

  • Biegler R, Morris RGM (1999) Blocking in the spatial domain with arrays of discrete landmarks. J Exp Psychol Anim Behav Process 25:334–351

    Article  PubMed  CAS  Google Scholar 

  • Brodbeck DR (1994) Memory for spatial and local cues—a comparison of a storing and a nonstoring species. Anim Learn Behav 22:119–133

    Article  Google Scholar 

  • Bullens J, Nardini M, Doeller CF, Braddick O, Postma A, Burgess N (2010) The role of landmarks and boundaries in the development of spatial memory. Dev Sci 13:170–180

    Article  PubMed  Google Scholar 

  • Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cognit Sci 10:551–557

    Article  Google Scholar 

  • Call J (2001) Object Permanence in Orangutans (Pongo pygmaeus), Chimpanzees (Pan troglodytes), and children (Homo sapiens). J Comp Psychol 115:159–171

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23

    Article  PubMed  Google Scholar 

  • Cheng K, Sherry DF (1992) Landmark-based spatial memory in birds (Parus atricapillus and Columba livia): the use of edges and distances to represent spatial positions. J Comp Psychol 106:331–341

    Article  Google Scholar 

  • Cheng K, Spetch ML (1998) Mechanisms of landmark use in mammals and birds. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 1–17

    Google Scholar 

  • Chiandetti C, Regolin L, Sovrano VA, Vallortigara G (2007) Spatial reorientation: the effects of space size on the encoding of landmark and geometry information. Anim Cogn 10:159–168

    Article  PubMed  Google Scholar 

  • Church DL, Plowright CMS (2006) Spatial encoding by Bumblebees (Bombus impatiens) of a reward within an artificial flower array. Anim Cogn 9:131–140

    Article  PubMed  Google Scholar 

  • de Blois ST, Novak MA (1994) Object permanence in Rhesus Monkeys (Macaca mulatta). J Comp Psychol 108:318–327

    Article  Google Scholar 

  • de Blois ST, Novak MA, Bond M (1998) Object permanence in Orangutans (Pongo pygmaeus) and Squirrel Monkeys (Saimiri sciureus). J Comp Psychol 112:137–152

    Article  PubMed  Google Scholar 

  • Deipolyi A, Santos L, Hauser MD (2001) The role of landmarks in cotton-top tamarin spatial foraging: evidence for geometric and non-geometric features. Anim Cogn 4:99–108

    Article  Google Scholar 

  • DeLoache JS, Brown AL (1983) Very young children’s memory for the location of objects in a large-scale environment. Child Dev 54:888–897

    Article  PubMed  CAS  Google Scholar 

  • Deppe AM, Wright PC, Szelistowski WA (2009) Object permanence in Lemurs. Anim Cogn 12:381–388

    Article  PubMed  Google Scholar 

  • Dolins FL (2009) Captive Cotton-Top Tamarins’ (Saguinus oedipus oedipus) use of landmarks to localize hidden food items. Am J Primatol 71:316–323

    Article  PubMed  Google Scholar 

  • Fedor A, Skollár G, Szerencsy N, Ujhelyi M (2008) Object permanence Tests on Gibbons (Hylobatidae). J Comp Psychol 122:403–417

    Article  PubMed  Google Scholar 

  • Fiset S, Dore FY (1996) Spatial encoding in domestic cats (Felis catus). J Exp Psychol Anim Behav Process 22:420–437

    Article  PubMed  CAS  Google Scholar 

  • Fiset S, Gagnon S, Beaulieu C (2000) Spatial encoding of hidden objects in dogs (Canis familiaris). J Comp Psychol 114:315–324

    Article  PubMed  CAS  Google Scholar 

  • Garber PA, Paciulli LM (1997) Experimental field study of spatial memory and learning in wild Capuchin Monkeys (Cebus capucinus). Folia Primatol 68:236–253

    Article  PubMed  CAS  Google Scholar 

  • Gibbs S, Lea S, Jacobs L (2007) Flexible use of spatial cues in the Southern flying squirrel (Glaucomys volans). Anim Cogn 10:203–209

    Article  PubMed  Google Scholar 

  • Goodyear AJ, Kamil AC (2004) Clark’s Nutcrackers (Nucifraga columbiana) and the effects of goal-landmark distance on overshadowing. J Comp Psychol 118:258–264

    Article  PubMed  Google Scholar 

  • Gouteux S, Thinus-Blanc C, Vauclair J (2001) Rhesus monkeys use geometric and nongeometric information during a reorientation task. J Exp Psychol Gen 130:505–519

    Article  PubMed  CAS  Google Scholar 

  • Haun DBM, Call J (2009) Great Apes’ capacities to recognize relational similarity. Cognition 110:147–159

    Article  PubMed  Google Scholar 

  • Haun DBM, Call J, Janzen G, Levinson SC (2006a) Evolutionary psychology of spatial representations in the Hominidae. Curr Biol 16:1736–1740

    Article  PubMed  CAS  Google Scholar 

  • Haun DBM, Rapold CJ, Call J, Janzen G, Levinson SC (2006b) Cognitive Cladistics and Cultural Override in Hominid Spatial Cognition. Proc Natl Acad Sci USA 103:17067–17068

    Article  Google Scholar 

  • Herrmann E, Call J, Hernández-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360–1366

    Article  PubMed  CAS  Google Scholar 

  • Hoffman ML, Beran MJ (2006) Chimpanzees (Pan troglodytes) remember the location of a hidden food item after altering their orientation to a spatial array. J Comp Psychol 120:389–393

    Article  PubMed  Google Scholar 

  • Hribar A, Haun D, Call J (2011) Great Apes’ strategies to map spatial relations. Anim Cogn, doi:10.1007/s10071-011-0385-6

  • Huttenlocher J, Newcombe N, Sandberg EH (1994) The coding of spatial location in young children. Cognit Psychol 27:115–147

    Article  PubMed  CAS  Google Scholar 

  • Kanngiesser P, Call J (2010) Bonobos, Chimpanzees, Gorillas, and Orang Utans use feature and spatial cues in two spatial memory tasks. Anim Cogn 13:419–430

    Article  PubMed  Google Scholar 

  • Kubo-Kawai N, Kawai N (2007) Interference effects by spatial proximity and age-related declines in spatial memory by Japanese Monkeys (Macaca fuscata): deficits in the combined use of multiple spatial cues. J Comp Psychol 121:189–197

    Article  PubMed  Google Scholar 

  • Learmonth AE, Newcombe NS, Huttenlocher J (2001) Toddlers’ use of metric information and landmarks to reorient. J Exp Child Psychol 80:225–244

    Article  PubMed  CAS  Google Scholar 

  • Legge ELG, Spetch ML, Batty ER (2009) Pigeons’ (Columba livia) hierarchical organization of local and global cues in touch screen tasks. Behav Process 80:128–139

    Article  Google Scholar 

  • MacDonald SE (1994) Gorillas’ (Gorilla gorilla gorilla) spatial memory in a foraging task. J Comp Psychol 108:107–113

    Article  PubMed  CAS  Google Scholar 

  • MacDonald SE, Agnes MM (1999) Orangutan (Pongo pygmaeus abelii) spatial memory and behavior in a foraging task. J Comp Psychol 113:213–217

    Article  Google Scholar 

  • MacDonald SE, Wilkie DM (1990) Yellow-nosed monkeys’ (Cercopithecus ascanius whitesidei) spatial memory in a simulated foraging environment. J Comp Psychol 104:382–387

    Article  Google Scholar 

  • MacDonald SE, Spetch ML, Kelly DM, Cheng K (2004) Strategies in landmark use by children, adults, and Marmoset Monkeys. Learn Motiv 35:322–347

    Article  Google Scholar 

  • Marsh HL, Spetch ML, MacDonald SE (2011) Strategies in landmark use by orangutans and human children. Anim Cogn, doi:10.1007/s10071-011-0382-9

  • Martin-Ordas G, Haun D, Colmenares F, Call J (2010) Keeping Track of Time: Evidence for Episodic-Like Memory in Great Apes. Anim Cogn 13:331–340

    Article  PubMed  Google Scholar 

  • Mendes N, Huber L (2004) Object permanence in Common Marmosets (Callithrix jacchus). J Comp Psychol 118:103–112

    Article  PubMed  Google Scholar 

  • Menzel EW (1973) Chimpanzee spatial memory organization. Science 182:943–945

    Article  PubMed  CAS  Google Scholar 

  • Menzel CR (1996) Spontaneous use of matching visual cues during foraging by long-tailed Macaques (Macaca fascicularis). J Comp Psychol 110:370–376

    Article  PubMed  CAS  Google Scholar 

  • Newcombe NS, Huttenlocher J (2000) Making space: the development of spatial representation and reasoning. The MIT Press, Cambridge

    Google Scholar 

  • Potì P (2000) Aspects of spatial cognition in Capuchins (Cebus apella) frames of reference and scale of space. Anim Cogn 3:69–77

    Article  Google Scholar 

  • Potì P, Bartolommei P, Saporiti M (2005) Landmark use by Cebus apella. Int J Primatol 26:921–948

    Article  Google Scholar 

  • Potì P, Kanngiesser P, Saporiti M, Amiconi A, Bläsing B, Call J (2010) Searching in the Middle-Capuchins’ (Cebus apella) and Bonobos’ (Pan paniscus) behavior during a spatial search task. J Exp Psychol Anim Behav Process 36:92–109

    Article  PubMed  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford University Press, New York

    Google Scholar 

  • Simms N, Gentner D (2008) Spatial language and landmark use: can 3-, 4-, and 5-year-olds find the middle? In: Love BC, McRae K, Sloutsky VM (eds) Proceedings of the 30th annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 191–196

    Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2007) How fish do geometry in large and in small spaces. Anim Cogn 10:47–54

    Article  PubMed  Google Scholar 

  • Spetch SML, Edwards CA (1988) Pigeons’, Columba Livia, use of global and local cues for spatial memory. Anim Behav 36:293–296

    Article  Google Scholar 

  • Spetch ML, Kelly DM (2006) Comparative spatial cognition: processes in landmark- and surface-based place finding. In: Wasserman EA, Zentall TR (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, New York, pp 210–228

    Google Scholar 

  • Sutton JE, Olthof A, Roberts WA (2000) Landmark use by Squirrel Monkeys (Saimiri sciureus). Anim Learn Behav 28:28–42

    Article  Google Scholar 

  • Uttal DH, Sandstrom LB, Newcombe NS (2006) One hidden object, two spatial codes: young children’s use of relational and vector coding. J Cognit Dev 7:503–525

    Article  Google Scholar 

  • Vallortigara G, Zanforlin M (1986) Position learning in Chicks. Behav Process 12:23–32

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Academic Exchange Service (DAAD) through a PhD grant to the first author. We thank Nathan Pyne-Carter for improving the English of the manuscript. The reported experiments comply with all laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alenka Hribar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hribar, A., Call, J. Great apes use landmark cues over spatial relations to find hidden food. Anim Cogn 14, 623–635 (2011). https://doi.org/10.1007/s10071-011-0397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-011-0397-2

Keywords

Navigation