Skip to main content
Log in

Multiple perceptual strategies used by macaque monkeys for face recognition

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Successful integration of individuals in macaque societies suggests that monkeys use fast and efficient perceptual mechanisms to discriminate between conspecifics. Humans and great apes use primarily holistic and configural, but also feature-based, processing for face recognition. The relative contribution of these processes to face recognition in monkeys is not known. We measured face recognition in three monkeys performing a visual paired comparison task. Monkey and humans faces were (1) axially rotated, (2) inverted, (3) high-pass filtered, and (4) low-pass filtered to isolate different face processing strategies. The amount of time spent looking at the eyes, mouth, and other facial features was compared across monkey and human faces for each type of stimulus manipulation. For all monkeys, face recognition, expressed as novelty preference, was intact for monkey faces that were axially rotated or spatially filtered and was supported in general by preferential looking at the eyes, but was impaired for inverted faces in two of the three monkeys. Axially rotated, upright human faces with a full range of spatial frequencies were also recognized, however, the distribution of time spent exploring each facial feature was significantly different compared to monkey faces. No novelty preference, and hence no inferred recognition, was observed for inverted or low-pass filtered human faces. High-pass filtered human faces were recognized, however, the looking pattern on facial features deviated from the pattern observed for monkey faces. Taken together these results indicate large differences in recognition success and in perceptual strategies used by monkeys to recognize humans versus conspecifics. Monkeys use both second-order configural and feature-based processing to recognize the faces of conspecifics, but they use primarily feature-based strategies to recognize human faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bentin S, Sagiv N, Mecklinger A, Friederici A, von Cramon YD (2002) Priming visual face-processing mechanisms: electrophysiological evidence. Psychol Sci 13:190–193

    Article  PubMed  Google Scholar 

  • Bruce C (1982) Face recognition by monkeys: absence of an inversion effect. Neuropsychologia 20(5):515–521

    Article  PubMed  CAS  Google Scholar 

  • Dahl CD, Logothetis NK, Hoffman KL (2007) Individuation and holistic processing of faces in rhesus monkeys. Proc Biol Sci 274(1622):2069–2076

    Article  PubMed  Google Scholar 

  • de Haan M, Pascalis O, Johnson MH (2002) Specialization of neural mechanisms underlying face recognition in human infants. J Cogn Neurosci 14(2):199–209

    Article  PubMed  Google Scholar 

  • Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol Gen 115(2):107–117

    Article  PubMed  CAS  Google Scholar 

  • Dittrich W (1990) Representation of faces in longtailed Macaques (Macaca fascicularis). Ethology 85:265–278

    Article  Google Scholar 

  • Dufour V, Pascalis O, Petit O (2006) Face processing limitation to own species in primates: a comparative study in brown capuchins, Tonkean macaques and humans. Behav Processes 73(1):107–113

    Article  PubMed  Google Scholar 

  • Emery NJ (2000) The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci Biobehav Rev 24(6):581–604

    Article  PubMed  CAS  Google Scholar 

  • Fagan JF (1972) Infants’ recognition memory for faces. J Exp Child Psychol 14(3):453–476

    Article  PubMed  Google Scholar 

  • Fantz RL (1964) Visual experience in infants: decreased attention to familiar patterns relative to novel ones. Science 146:668–670

    Article  PubMed  CAS  Google Scholar 

  • Gauthier I, Curran T, Curby KM, Collins D (2003) Perceptual interference supports a non-modular account of face processing. Nat Neurosci 6(4):428–432

    Article  PubMed  CAS  Google Scholar 

  • Ghazanfar AA, Santos LR (2004) Primate brains in the wild: the sensory bases for social interactions. Nat Rev Neurosci 5:603–616

    Article  PubMed  CAS  Google Scholar 

  • Ghazanfar AA, Nielsen K, Logothetis NK (2006) Eye movements of monkey observers viewing vocalizing conspecifics. Cognition 101:515–529

    Article  PubMed  Google Scholar 

  • Goffaux V, Hault B, Michel C, Vuong QC, Rossion B (2005) The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception 34(1):77–86

    Article  PubMed  Google Scholar 

  • Gothard KM, Erickson CA, Amaral DG (2004) How do rhesus monkeys (Macaca mulatta) scan faces in a visual paired comparison task? Anim Cogn 7(1):25–36

    Article  PubMed  Google Scholar 

  • Guo K, Mahmoodi S, Robertson RG, Young MP (2006) Longer fixation duration while viewing face images. Exp Brain Res 171:91–98

    Article  PubMed  Google Scholar 

  • Guo K (2007) Initial fixation placement in face images is driven by top-down guidance. Exp Brain Res 181:673–677

    Article  PubMed  Google Scholar 

  • Gunderson V, Swartz KB (1985) Visual recognition in infant pigtailed macaques after 24-hour delay. American Journal of Primatology 8:259–264

    Article  Google Scholar 

  • Hills PJ, Lewis MB (2006) Reducing the own-race bias in face recognition by shifting attention. Q J Exp Psychol (Colchester) 59(6):996–1002

    Article  Google Scholar 

  • Kanwisher N, Tong F, Nakayama K (1998) The effect of face inversion on the human fusiform face area. Cognition 68(1):B1–11

    Article  PubMed  CAS  Google Scholar 

  • Keating C, Keating EG (1993) Monkeys and mug shots: cues used by rhesus monkeys (Macaca mulatta) to recognize a human face. J Comp Psychol 107:131–139

    Article  PubMed  CAS  Google Scholar 

  • Kyes RC, Candland DK (1987) Baboon (Papio hamadryas) visual preferences for regions of the face. J Comp Psychol 101(4):345–348

    Article  PubMed  CAS  Google Scholar 

  • Lacreuse A, Herndon JG (2003) Estradiol selectively affects processing of conspecifics’ faces in female rhesus monkeys. Psychoneuroendocrinology 28(7):885–905

    Article  PubMed  CAS  Google Scholar 

  • Leder H, Bruce V (2000) When inverted faces are recognized: the role of configural information in face recognition. Q J Exp Psychol A 53(2):513–536

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1980) Visual information processing: the structure and creation of visual representations. Philos Trans R Soc Lond B Biol Sci 290(1038):199–218

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Grand RL, Mondloch CJ (2002) The many faces of configural processing. Trends Cogn Sci 6(6):255–260

    Article  PubMed  Google Scholar 

  • Mondloch CJ, Maurer D, Ahola S (2006) Becoming a face expert. Psychol Sci 17(11):930–934

    Article  PubMed  Google Scholar 

  • Mosher CM, Brooks KN, Spitler KM, Zimmerman PE, Wilder T, Gothard KM (2006) Enhanced skin conductance responses elicited by facial expressions with averted gaze in Rhesus macaques. Program No. 72.11.EE11, 2006 Neuroscience Meeting Planner. Society for Neuroscience, Atlanta, Online

  • Nachson I, Shechory M (2002) Effect of inversion on the recognition of external and internal facial features. ActaPsychol 109:227–238

    Google Scholar 

  • Nahm F, Perrett A, Amaral D, Albright T (1997) How do monkeys look at faces? J Cogn Neurosci 9:611–623

    Article  Google Scholar 

  • Nelson CA (1995) The ontomeny of the human memory: a cognitive neuroscience perspective. Dev Psychol 31:723–738

    Article  Google Scholar 

  • O’Toole AJ, Vetter T, Blanz V (1999) Three-dimensional shape and two-dimensional surface reflectance contributions to face recognition: an application of three-dimensional morphing. Vis Res 39(18):3145–3155

    Article  PubMed  CAS  Google Scholar 

  • Overman W, Bachevalier J, Turner M, Peuster A (1992) Object recognition versus object discrimination: comparison between human infants and infant monkeys. Behav Neurosci 106(1):15–29

    Article  PubMed  CAS  Google Scholar 

  • Overman WH Jr, Doty RW (1982) Hemispheric specialization displayed by man but not macaques for analysis of faces. Neuropsychologia 20(2):113–128

    Article  PubMed  Google Scholar 

  • Parr LA, Winslow IT, Hopkins WD (1999) Is the inversion effect in rhesus monkey face-specific? Anim Cogn 2:123–129

    Article  Google Scholar 

  • Parr LA, Heintz M (2006) The perception of unfamiliar faces and houses by chimpanzees: influence of rotation angle. Perception 35(11):1473–1483

    Article  PubMed  Google Scholar 

  • Parr LA, Heintz M, Akamagwuna U (2006) Three studies on configural face processing by chimpanzees. Brain Cogn 62(1):30–42

    Article  PubMed  Google Scholar 

  • Parr LA, Winslow JT, Hopkins WD, de Waal FB (2000) Recognizing facial cues: individual discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). J Comp Psychol 114(1):47–60

    Article  PubMed  CAS  Google Scholar 

  • Pascalis O, Bachevalier J (1999) Neonatal aspiration lesions of the hippocampal formation impair visual recognition memory when assessed by paired-comparison task but not by delayed nonmatching-to-sample task. Hippocampus 9(6):609–616

    Article  PubMed  CAS  Google Scholar 

  • Pascalis O, de Haan M, Nelson CA (2002) Is face processing species-specific during the first year of life? Science 296(5571):1321–1323

    Article  PubMed  CAS  Google Scholar 

  • Pascalis O, Scott LS, Kelly DJ, Shannon RW, Nicholson E, Coleman M, Nelson CA (2005) Plasticity of face processing in infancy. Proc Natl Acad Sci USA 102(14):5297–5300

    Article  PubMed  CAS  Google Scholar 

  • Phelps MT, Roberts WA (1994) Memory for pictures of upright and inverted primate faces in humans (Homo sapiens), squirrel monkeys (Saimiri sciureus), and pigeons (Columba livia). J Comp Psychol 108(2):114–125

    Article  PubMed  CAS  Google Scholar 

  • Pineda JA, Sebestyen G, Nava C (1994) Face recognition as a function of social attention in non-human primates: an ERP study. Brain Res Cogn Brain Res 2(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Pourtois G, Schwartz S, Seghier ML, Lazeyras F, Vuilleumier P (2005) Portraits or people? Distinct representations of face identity in the human visual cortex. J Cogn Neurosci 17(7):1043–1057

    Article  PubMed  Google Scholar 

  • Rakover SS (2002) Featural vs. configurational information in faces: a conceptual and empirical analysis. Br J Psychol 93:1–30

    Article  PubMed  Google Scholar 

  • Rhodes G, Hayward WG, Winkler C (2006) Expert face coding: configural and component coding of own-race and other-race faces. Psychon Bull Rev 13(3):499–505

    PubMed  Google Scholar 

  • Richmond J, Colombo M, Hayne H (2007) Interpreting visual preferences in the visual paired-comparison task. J Exp Psychol Learn Mem Cogn 33(5):823–831

    Article  PubMed  Google Scholar 

  • Rosenfeld SA, Van Hoesen GW (1979) Face recognition in the rhesus monkey. Neuropsychologia 17(5):503–509

    Article  PubMed  CAS  Google Scholar 

  • Schyns PG, Bonnar L, Gosselin F (2002) Show me the features! Understanding recognition from the use of visual information. Psychol Sci 13(5):402–409

    Article  PubMed  Google Scholar 

  • Sekuler AB, Gaspar CM, Gold JM, Bennett PJ (2004) Inversion leads to quantitative, not qualitative, changes in face processing. Curr Biol 14(5):391–396

    Article  PubMed  CAS  Google Scholar 

  • Sergeant J (1986) Microgenesis of face perception. In: Ellis H, Jeeves M, Newcombe F, Young A (eds) Aspects of face processing. Kluwer, Dordrecht, pp 17–33

    Google Scholar 

  • Swartz KB (1983) Species discrimination in infant pigtail macaques with pictorial stimuli. Dev Psychobiol 16(3):219–231

    Article  PubMed  CAS  Google Scholar 

  • Tarr MJ, Gauthier I (2000) FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat Neurosci 3(8):764–769

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (1994) How laboratory-raised Japanese monkeys (Macaca fuscata) perceive rotated photographs of monkeys: evidence of an inversion effect in face perception. Primates 35:155–165

    Article  Google Scholar 

  • Troje NF, Bulthoff HH (1998) How is bilateral symmetry of human faces used for recognition of novel views? Vis Res 38(1):79–89

    Article  PubMed  CAS  Google Scholar 

  • Valentine T, Bruce V (1988) Mental rotation of faces. Mem Cognit 16(6):556–566

    PubMed  CAS  Google Scholar 

  • Vermeire BA, Hamilton CR (1998) Inversion effect for faces in split-brain monkeys. Neuropsychologia 36(10):1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Vinette C, Gosselin F, Schyns PG (2004) Spatio-temporal dynamics of face recognition in a flash: it’s in the eyes. Cogn Sci Multidisciplinary J 28(2):289–301

    Article  Google Scholar 

  • Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51(2):167–194

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Roberts W (1969) Monkey and human perception: inversion effects for human but not for monkey faces and scenes. J Cogn Neurosci 8:278–290

    Article  Google Scholar 

  • Yin R (1969) Looking at upside-down faces. Exp Psychol 81:141–145

    Article  Google Scholar 

  • Yovel G, Kanwisher N (2004) Face perception: domain specific, not process specific. Neuron 44(5):889–898

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Prisca Zimmerman was responsible for anesthesia, postoperative care, and behavioral training of all the monkeys involved in this project. She also helped with data collection. We are grateful to Kevin Spitler for help with data collection and to Natalie Brill for programming. We are grateful to our dedicated veterinarian, Dr. Michael Rand for all his help to keep our animals healthy and well-adjusted to life in the laboratory. Dr. Kari Hoffman provided editorial comments on a previous version of the manuscript; Robert Gibboni edited the submitted version. We thank a reviewer for excellent suggestions regarding data analysis. Supported by NSF BCS 0425650 (MAP) and by MH 070836 (KMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin M. Gothard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gothard, K.M., Brooks, K.N. & Peterson, M.A. Multiple perceptual strategies used by macaque monkeys for face recognition. Anim Cogn 12, 155–167 (2009). https://doi.org/10.1007/s10071-008-0179-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-008-0179-7

Keywords

Navigation