Skip to main content
Log in

One-encounter search-image formation by araneophagic spiders

  • Original Article
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

An experimental study of search-image use by araneophagic jumping spiders (i.e., salticid spiders that prey routinely on other spiders) supports five conclusions. First, araneophagic salticids have an innate predisposition to form search images for specific prey from their preferred prey category (spiders) rather than for prey from a non-preferred category (insects). Second, single encounters are sufficient for forming search images. Third, search images are based on selective attention specifically to optical cues. Fourth, there are trade-offs in attention during search-image use (i.e., forming a search image for one type of spider diminishes the araneophagic salticid’s attention to other spiders). Fifth, the araneophagic salticid’s adoption of search images is costly to the prey (i.e., when the araneophagic salticid adopts a search, the prey’s prospects for surviving encounters with the araneophagic salticid are diminished). Cognitive and ecological implications of search-image use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blest AD, O’Carroll DC, Carter M (1990) Comparative ultrastructure of Layer I receptor mosaics in principal eyes of jumping spiders: the evolution of regular arrays of light guides. Cell Tissue Res 262:125–141

    PubMed  Google Scholar 

  • Blough PM (1991) Selective attention and search images in pigeons. J Exp Psychol Anim Behav Process 17:292–298

    CAS  PubMed  Google Scholar 

  • Bond AB (1983) Visual search and selection of natural prey stimuli in the pigeons. J Exp Psychol Anim Behav Process 9:292–306

    CAS  PubMed  Google Scholar 

  • Bond AB, Kamil AC (1998) Apostatic selection by blue jays produces balanced polymorphism in virtual prey. Nature 395:594–596

    Article  CAS  Google Scholar 

  • Bond AB, Kamil AC (2002) Visual predators select for crypticity and polymorphism in virtual prey. Nature 415:609–613

    Article  CAS  PubMed  Google Scholar 

  • Broadbent DE (1958) Perception and communication. Pergamon, London

  • Carducci JP, Jakob EM (2000) Rearing environment affects behaviour of jumping spiders. Anim Behav 59:39–46

    Article  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulmann GL, Petersen SE (1990) Attentional modulation of neural processing of shape, color and velocity in humans. Science 248:1556–1559

    CAS  PubMed  Google Scholar 

  • Croze H (1970) Searching image in carrion crows. Z Tierpsychol 5:1–86

    Google Scholar 

  • Dabelow S (1958) Zur Biologie der Leimschleuderspinne Scytodes thoracica (Latreille). Zool Jahrb Syst 86:85–126

    Google Scholar 

  • Dawkins M (1971a) Perceptual changes in chicks: another look at the “search image” concept. Anim Behav 19:566–574

    Google Scholar 

  • Dawkins M (1971b) Shifts of “attention” in chicks during feeding. Anim Behav 19:575–582

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective attention. Annu Rev Neurosci 18:193–222

    CAS  PubMed  Google Scholar 

  • Dukas R, Kamil AC (2000) The cost of limited attention in blue jays. Behav Ecol 11:502–506

    Article  Google Scholar 

  • Dukas R, Kamil AC (2001) Limited attention: the constraint underlying search image. Behav Ecol 12:192–199

    Article  Google Scholar 

  • Foelix RF (1996) Biology of spiders. Oxford University Press, New York

  • Gendron RP (1986) Searching for cryptic prey: evidence for optimal search rates and the formation of search images in quail. Anim Behav 34:898–912

    Google Scholar 

  • Gendron RP, Staddon JER (1983) Searching for cryptic prey: the effect of search rate. Am Nat 121:172–181

    Article  Google Scholar 

  • Gilbert C, Rayor LS (1985) Predatory behavior of spitting spiders (Araneae: Scytodidae) and the evolution of prey wrapping. J Arachnol 13:231–241

    Google Scholar 

  • Guilford T, Dawkins MS (1987) Search image not proven: appraisal of recent evidence. Anim Behav 35:1838–1845

    Google Scholar 

  • Grunbaum AA (1927) Uber das Verhalten der Spinne Epeira diademata, besonders gegenuber vibratorischen Reizen. Psychol Forsch 9:275–294

    Google Scholar 

  • Harland DP, Jackson RR, Macnab AM (1999) Distances at which jumping spiders distinguish between prey and conspecific rivals. J Zool (Lond) 247:357–364

    Google Scholar 

  • Heijden AHC van der (1992) Selective attention in vision. Chapman and Hall, London

  • Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B 353:1257–1270

    CAS  Google Scholar 

  • Homann H (1928) Beiträge zur Physiologie der Spinnenaugen.I. Untersuchungsmethoden, II. Das Sehvermögen der Salticiden. Z Vergl Physiol 7:201–268

    Google Scholar 

  • Homann H (1971) Die Augen der Araneen. Anatomie, Ontogenie und Bedeutung fur die Systematik (Chelicerate, Arachnida). Z Morphol Oekol Tiere 69:201–272

    Google Scholar 

  • Jackson RR (1986) Web building, predatory versatility, and the evolution of the Salticidae. In: Shear WA (ed) Spiders: webs, behavior, and evolution. Stanford University Press, Stanford, Calif., pp 232–268

  • Jackson RR, Carter CM (2001) Interpopulation variation in use of trial-and-error derivation of aggressive-mimicry signals by Portia labiata from the Philippines. J Insect Behav 14:799–827

    Google Scholar 

  • Jackson RR, Hallas SEA (1986) Comparative biology of Portia africana, P. albimana, P. fimbriata, P. labiata, and P. schultzi, araneophagic web-building jumping spiders (Araneae: Salticidae): utilisation of silk, predatory versatility, and intraspecific interactions. N Z J Zool 13:423–489

    Google Scholar 

  • Jackson RR, Pollard SD (1996) Predatory behavior of jumping spiders. Annu Rev Entomol 41:287–308

    CAS  Google Scholar 

  • Jackson RR, Wilcox RS (1994) Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour 127:21–36

    Google Scholar 

  • Jackson RR, Wilcox RS (1998) Spider-eating spiders. Am Sci 86:350–357

    Article  Google Scholar 

  • Jackson RR, Li D, Fijn N, Barrion AT (1998) Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araeneophagic spitting spiders (Scytodidae) from the Philippines. J Insect Behav 11:319–342

    Google Scholar 

  • Jackson RR, Pollard SD, Cerveira CM (2002) Opportunistic use of cognitive smokescreens by araneophagic jumping spiders. Anim Cogn 5:147–157

    Article  PubMed  Google Scholar 

  • Kahneman D (1973) Attention and effort. Prentice-Hall, New York

  • Kastner S, de Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by MRI. Science 282:108–111

    Article  CAS  PubMed  Google Scholar 

  • La Berge D (1995) Attentional processing. Harvard University Press, Cambridge, Mass.

  • Land MF (1969a) Structure of retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470

    CAS  PubMed  Google Scholar 

  • Land MF (1969b) Movements of retinae of jumping spiders (Salticidae) in response to visual stimuli. J Exp Biol 51:471–493

    CAS  PubMed  Google Scholar 

  • Land MF, Nilsson DE (2002) Animal eyes. Oxford University Press, Oxford

  • Langley CM, Riley DA, Bond AB, Goal N (1995) Visual search for natural grains in pigeons (Columba livia): search images and selective attention. J Exp Psychol Anim Behav Process 22:139–151

    Google Scholar 

  • Lawrence ES (1986) Can great tits acquire (Parus major) search images? Oikos 47:3–12

    Google Scholar 

  • Lawrence ES, Allen JA (1983) On the term ‘search image’. Oikos 40:313–314

    Google Scholar 

  • Li D, Jackson RR (1996) Prey preferences of Portia fimbriata, an araneophagic, web-building jumping spider (Araneae: Salticidae) from Queensland. J Insect Behav 9:613–642

    Google Scholar 

  • Li D, Jackson RR (1997) Influence of diet on survivorship and growth in Portia fimbriata, an araneophagic jumping spider (Araneae: Salticidae). Can J Zool 75:1652–1658

    Google Scholar 

  • Li D, Jackson RR (2003) A predator’s preference for egg-carrying prey: a novel cost of parental care. Behav Ecol Sociobiol 55:129–136

    Article  Google Scholar 

  • Li D, Jackson RR, Barrion AT (1997) Prey preferences of Portia labiata, P. africana, and P. schultzi, araneophagic jumping spiders (Araneae: Salticidae) from the Philippines, Sri Lanka, Kenya and Uganda. N Z J Zool 24:333–349

    Google Scholar 

  • Li D, Jackson RR, Barrion AT (1999) Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. J Zool (Lond) 247:293–310

    Google Scholar 

  • McAlister W (1960) The spitting habit in the spider Scytodes intricata Banks (Family Scytodidae). Texas J Sci 12:17–20

    Google Scholar 

  • Maunsell JHR (1995) The brain’s visual world: representation of visual targets in cerebral cortex. Science 270:764–769

    CAS  PubMed  Google Scholar 

  • Melcer T, Chiszar D (1989) Striking prey creates a specific chemical search image in rattlesnakes. Anim Behav 37:477–486

    Google Scholar 

  • Mook JH, Mook LJ, Heikens HS (1960) Further evidence for the role of “searching images” in the hunting behaviour of titmice. Arch Neerland Zool 13:448–465

    Google Scholar 

  • Morgan RA, Brown JS (1996) Using giving-up densities to detect search images. Am Nat 148:1059–1074

    Article  Google Scholar 

  • Morse DH (2000) Flower choice by naive young crab spiders and the effect of subsequent experience. Anim Behav 59:943–951

    Article  PubMed  Google Scholar 

  • Nams VO (1997) Density-dependent predation by skunks using olfactory search images. Oecologia 110:440–448

    Article  Google Scholar 

  • Navon D, Gopher D (1979) On the economy of the human processing system. Psychol Rev 86:214–255

    Article  Google Scholar 

  • Nentwig W (1985) Feeding ecology of the tropical spitting spider Scytodes longipes (Araneae, Scytodidae). Oecologia 65:284–288

    Google Scholar 

  • Pashler (1998) The psychology of attention. MIT Press, Cambridge, Mass.

  • Persons MH, Walker SE, Rypstra AL, Marshall SD (2001) Wolf spider predator avoidance tactics and survival in the presence of diet-mediated predator cues (Araneae: Lycosidae). Anim Behav 61:43–51

    Article  PubMed  Google Scholar 

  • Persons MH, Walker SE, Rypstra AL, Marshall SD (2002) Fitness costs and benefits of antipredator behavior mediated by chemotactile cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). Behav Ecol 13:386–392

    Article  Google Scholar 

  • Pietrewicz PT, Kamil AC (1979) Search image formation in the blue jay (Cyanocitta cristata). Science 204:1332–1333

    Google Scholar 

  • Plaisted KC, MacIntosh NJ (1995) Visual search for cryptic stimuli in pigeons: implications for the search image and search rate hypotheses. Anim Behav 50:1219–1232

    Article  Google Scholar 

  • Posner MI, Petersen SE (1990) The attentional system of the human brain. Annu Rev Neurosci 13:25–42

    CAS  PubMed  Google Scholar 

  • Punzo F (1998) Learning and localization of brain function in the tarantula spider, Phonopelma chalcodes (Orthognatha, Theraphosidae). Comp Biochem Physiol 89A:465–470

    Google Scholar 

  • Rausher MD (1978) Search image for leaf shape in a butterfly. Science 200:1071–1073

    Google Scholar 

  • Royama T (1970) Factors governing the hunting behavior and selection of food by the great tit (Parus major L.). J Anim Ecol 39:619–668

    Google Scholar 

  • Schmidt KA (1998) The consequences of partially directed search effort. Evol Ecol 12:263–277

    Article  Google Scholar 

  • Seah WK, Li D (2001) Stabilimenta attract unwelcome predators to orb webs. Proc R Soc Lond B 268:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Shaw ML, Shaw P (1977) Optimal allocation of cognitive resources to spatial locations. J Exp Psychol Hum Percept Perform 3:201–211

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles of statistics in biological research, 3rd edn. Freeman, New York

  • Spitzer H, Desimone R, Moran J (1988) Increased attention enhances both behavioral and neuronal performance. Science 240:338–340

    CAS  PubMed  Google Scholar 

  • Tarsitano MS, Jackson RR, Kirchner W (2000) Signals and signal choices made by araneophagic jumping spiders while hunting the orb-weaving spiders Zygiella x-notata and Zosis genicularis. Ethology 106:595–615

    Article  Google Scholar 

  • Tinbergen L (1960) The natural control of insects in pinewoods 1. Factors influencing the intensity of predation by song birds. Arch Neerland Zool 13:265–343

    Google Scholar 

  • Wanless FR (1978) A revision of the spider genus Portia (Araneae: Salticidae). Bull Br Mus Nat Hist 34:83–124

    Google Scholar 

  • Wilcox RS, Jackson RR (1998) Cognitive abilities of araneophagic jumping spiders. In: Pepperberg I, Kamil A, Balda R (ed) Animal cognition in nature. Academic, New York, pp 411–434

  • Wilcox RS, Jackson RR (2002) Jumping spider tricksters: deceit, predation, and cognition. In: Bekoff M, Allen C, Burghardt G (eds) The cognitive animal. MIT Press, Cambridge, Mass., pp 27–33

  • Williams DS, McIntyre P (1980) The principal eyes of a jumping spider have a telephoto component. Nature 228:578–580

    Google Scholar 

Download references

Acknowledgements

Work in the Philippines was generously supported by the International Rice Research Institute (IRRI), and we are especially grateful to Alberto T. Barrion, Kong Luen Heong, and Tom W. Mew for the numerous ways in which they supported the research and to the following IRRI staff for their assistance: Elpie Hernandez, Errol Rico, Ruben Abuyo, Glicerio Javier Jr, Josie Lynn Catindig and Clod Lapis. Our research was funded in part by grants from the Marsden Fund of the New Zealand Royal Society (UOC305) and the National University of Singapore ARC (R-154-000-140-112 and R-154-000-188-112). All work complied with the current laws of New Zealand, the Philippines and Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiqin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, R.R., Li, D. One-encounter search-image formation by araneophagic spiders. Anim Cogn 7, 247–254 (2004). https://doi.org/10.1007/s10071-004-0219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-004-0219-x

Keywords

Navigation