Skip to main content
Log in

Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

To determine the physiochemical properties of the 4-α-glucanotransferase from Bifidobacterium sp., the bllj_0114 gene encoding 4-α-glucanotransferase was cloned from Bifidobacterium longum subsp. longum JCM 1217 and expressed in Escherichia coli. The amino acid sequence alignment indicated that the recombinant protein, named BL-αGTase, belongs to the glycoside hydrolase (GH) family 77. BL-αGTase was purified using nickel-nitrilotriacetic acid affinity chromatography and characterized using various substrates. The enzyme catalyzed the disproportionation activity, which transfers a glucosyl unit from oligosaccharides to acceptor molecules, and had the highest activity at 40 °C and pH 6.0. In the presence of 5 mM metal ions, in particular Cu2+, Zn2+, and Fe2+, BL-αGTase activity was reduced. To determine whether BL-αGTase can be used to generate thermoreversible gels, potato starch was treated with BL-αGTase for various reaction times. The BL-αGTase-treated starches showed sol–gel reversibility and melted at 59.6–75.7 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria populations in human health and aging. Front. Microbiol. 7: 1-9 (2016)

    Article  CAS  Google Scholar 

  • Bhuiyan S, Kitaoka M, Hayashi K. A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B-Enzym 22: 45-53 (2003)

    Article  CAS  Google Scholar 

  • Do VH, Mun S, Kim YL, Rho SJ, Park KH, Kim YR. Novel formulation of low-fat spread using rice starch modified by 4-alpha-glucanotransferase. Food Chem. 208: 132-141 (2016)

    Article  CAS  Google Scholar 

  • Godany A, Vidova B, Janecek S. The unique glycoside hydrolase family 77 amylomaltase from Borrelia burgdorferi with only catalytic triad conserved. FEMS Microbiol. Lett. 284: 84-91 (2008)

    Article  CAS  Google Scholar 

  • Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T, Matsuzawa H. Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J. Biol. Chem. 278: 19378-19386 (2003)

    Article  CAS  Google Scholar 

  • Janer C, Arigoni F, Lee BH, Pelaez C, Requena T. Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O. Appl. Environ. Microb. 71: 8460-8465 (2005)

  • Kaper T, Talik B, Ettema TJ, Bos H, van der Maarel MJ, Dijkhuizen L. Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl. Environ. Microb. 71: 5098-5106 (2005)

    Article  CAS  Google Scholar 

  • Kaper T, van der Maarel MJ, Euverink GJ, Dijkhuizen L. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 32: 279-282 (2004)

    Article  CAS  Google Scholar 

  • Kim MS, Jang JH, Kim YW. Overproduction of a thermostable 4-alpha-glucanotransferase by codon optimization at N-terminus region. J. Sci. Food Agr. 93: 2683-2690 (2013)

    Article  CAS  Google Scholar 

  • Kim NR, Jeong DW, Ko DS, Shim JH. Characterization of novel thermophilic alpha-glucosidase from Bifidobacterium longum. Int. J. Biol. Macromol. 99: 594-599 (2017)

    Article  CAS  Google Scholar 

  • Kuchtová A, Janeček Š. In silico analysis of family GH77 with focus on amylomaltases from Borreliae and disproportionating enzymes DPE2 from plants and bacteria. Biochim. Biophys. Acta 1854: 1260-1268 (2015)

    Article  Google Scholar 

  • Kwak JY, Kim MG, Kim YW, Ban HS, Won MS, Park JT, Park KH. Properties of a glycogen like polysaccharide produced by a mutant of Escherichia coli lacking glycogen synthase and maltodextrin phosphorylase. Carbohyd. Polym. 136: 649-655 (2016)

    Article  CAS  Google Scholar 

  • Lee HS, Auh JH, Yoon HG, Kim MJ, Park JH, Hong SS, Kang MH, Kim TJ, Moon TW, Kim JW, Park KH. Cooperative action of alpha-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J. Agric. Food Chem. 50: 2812-2817 (2002)

    Article  CAS  Google Scholar 

  • Lee JH, O’Sullivan DJ. Genomic insights into bifidobacteria. MMBR 74: 378-416 (2010)

    CAS  PubMed  Google Scholar 

  • Lee KY, Kim YR, Park KH, Lee HG. Rheological and gelation properties of rice starch modified with 4-alpha-glucanotransferase. Int. J. Biol. Macromol. 42: 298-304 (2008a)

    Article  CAS  Google Scholar 

  • Lee SH, Choi SJ, Shin SI, Park KH. Structural and rheological properties of sweet potato starch modified with 4-α-Glucanotransferase from Thermus aquaticus. Food Sci. Biotechnol. 17: 705-712 (2008b)

    CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495 (2014)

    Article  CAS  Google Scholar 

  • Machovič M, Janeček S. The invariant residues in the α-amylase family: just the catalytic triad. Biologia 58: 1127-1132 (2003)

    Google Scholar 

  • Mua J, Jackson, D. Relationships between functional attributes andmolecular structures of amylose and amylopectin fractions from corn starch. J. Agr. Food Chem. 45: 3848-3854 (1997)

    Article  CAS  Google Scholar 

  • Nguyen DHD, Park SH, Tran PL, Kim JW, Le QT, Boos W, Park JT. Characterization of the transglycosylation reaction of 4-alpha-glucanotransferase (MalQ) and its role in glycogen breakdown in Escherichia coli. J. Microbiol. Biotechnol. 29: 357-366 (2019)

    Article  Google Scholar 

  • Palmer TN, Ryman BE, Whelan WJ. The action pattern of amylomaltase from Escherichia coli. Eur. J. Biochem. 69: 105-115 (1976)

    Article  CAS  Google Scholar 

  • Park JH, Kim HJ, Kim YH, Cha HJ, Kim YW, Kim TJ, Kim YR, Park KH. The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydr. polym. 67: 164-173 (2007)

    Article  CAS  Google Scholar 

  • Takaha T, Yanase M, Okada S, Smith SM. Disproportionating enzyme (4-alpha-glucanotransferase; EC 2.4.1.25) of potato. purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268: 1391-1396 (1993)

  • Takaha T, Yanase M, Takata H, Okada S, Smith SM. Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 271: 2902-2908 (1996)

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729 (2013)

  • Tang SY, Yang SJ, Cha H, Woo EJ, Park C, Park KH. Contribution of W229 to the transglycosylation activity of 4-alpha-glucanotransferase from Pyrococcus furiosus. Biochim. Biophys. Acta 1764: 1633-1638 (2006)

    Article  CAS  Google Scholar 

  • Terada Y, Fujii K, Takaha T, Okada S. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Appl. Environ. Microbiol. 65: 910-915 (1999)

    Article  CAS  Google Scholar 

  • Tomsic M, Prossnigg F, Glatter O. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology. J. Colloid Interf. Sci. 322: 41-50 (2008)

    Article  CAS  Google Scholar 

  • van der Maarel MJ, Leemhuis H. Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydr. Polym. 93: 116-121 (2013)

    Article  Google Scholar 

  • Wang H, Lee IS, Braun C, Enck P. Effect of probiotics on central nervous system functions in animals and humans: A systematic review. J. Neurogastroenterol. Motil. 22: 589-605 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Hallym Research Fund (HRF-201905-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Shim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, DW., Jeong, HM., Shin, YJ. et al. Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application. Food Sci Biotechnol 29, 667–674 (2020). https://doi.org/10.1007/s10068-019-00707-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00707-4

Keywords

Navigation