Skip to main content
Log in

Antioxidant and anti-adipogenic activities of the nuts of Castanopsis cuspidata var. thunbergii

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The antioxidant and anti-adipogenic activities of the water extract (WE) and methanol extract (ME) of the shell and kernel of Castanopsis cuspidata var. thunbergii (CCT) nuts were evaluated. The shell extracts showed higher DPPH and ABTS radical scavenging activities (RSAs) than did the kernel extracts. Furthermore, the RSA of the ME was higher than that of the WE, regardless of the part. The total phenolic contents (TPCs) of the ME of the shell and kernel were 71.38 and 10.56 mg gallic acid equivalent (GAE)/100 mg extract, respectively. The TPCs of the WE of the shell and kernel were 17.44 and 9.27 mg GAE/100 mg extract, respectively. The WE inhibited 3T3-L1 adipogenesis more effectively than did the ME, and the shell extracts suppressed 3T3-L1 adipogenesis more effectively than did the kernel extracts. These results suggest that CCT nut kernels (ME) and shells (WE) may be strategically used to enhance antioxidant or and anti-obesity materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kang KA, Lee KH, Zhang R, Piao MJ, Kang MJ, Kwak YS, Yoo BS, You HJ, Hyun JW. Protective effects of Castanopsis cuspidate through activation of ERK and NF-kappaB on oxidative cell death induced by hydrogen peroxide. J. Toxicol. Environ. Health A. 70: 1319–1328 (2007)

    Article  CAS  Google Scholar 

  2. Lee SJ, An KW, Choi TS, Jung HS, Moon JH, Park KH. Component analysis and antioxidative activity of Castanopsis cuspidata var. sieboldii nut. Korean J. Food Preserv. 17: 139–144 (2010)

  3. Kim JY, Yoon WJ, Yim EY, Park SY, Kim YJ, Song G. Antioxidative and antimicrobial activities of Castanopsis cuspidata var. sieboldii extracts. Korean J. Plant Res. 24: 200–207 (2011)

  4. Ko YJ, Song SM, Hyun WC, Yang SK, Song CK, Lee DS, Yoon WJ. Anti-inflammatory effect of Castanopsis cuspidata extracts in murine macrophage RAW 264.7 cells. Korean J. Plant Res. 27: 439–446 (2014)

  5. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India 52: 794–804 (2004)

    CAS  Google Scholar 

  6. Ito N, Hirose M, Fukushima G, Tauda H, Shira T, Tatematsu M. Studies on antioxidant. Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 24: 1071–1081 (1986)

    Article  CAS  Google Scholar 

  7. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99: 191–203 (2006)

    Article  CAS  Google Scholar 

  8. Youn UY, Shon MS, Kim GN, Katagiri R, Harata K, Ishida Y, Lee SC. Antioxidant and anti-adipogenic activities of chestnut (Castanea crenata) byproducts. Food Sci. Biotechnol. 25: 1169–1174 (2016)

    Article  CAS  Google Scholar 

  9. Simon BF, Perez-Ilzarbe J, Hernandez T, Gomez-Cordoves C, Estrella I. Importance of phenolic compounds for the characterization of fruit juices. J. Agr. Food Chem. 40: 1531–1535 (1992)

    Article  Google Scholar 

  10. Custódio L, Patarra J, Alberício F, Neng NR, Nogueira JMF, Romano A. Extracts from Quercus sp. acorns exhibit in vitro neuroprotective features through inhibition of cholinesterase and protection of the human dopaminergic cell line SH-SY5Y from hydrogen peroxide-induced cytotoxicity. Ind. Crop Prod. 45: 114–120 (2013)

    Google Scholar 

  11. Gutfinger T. Polyphenols in olive oil. J. Am. Oil Chem. Soc. 58: 966–968 (1981)

    Article  CAS  Google Scholar 

  12. Lee SC, Kim JH, Jeong SM, Kim DR, Ha JU, Nam KC, Ahn DU. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 51: 4400–4403 (2003)

    Article  CAS  Google Scholar 

  13. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evan C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radic. Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63 (1983)

    Article  CAS  Google Scholar 

  15. Vázquez G, Fontenla E, Santos J, Freire MS, González-Álvarez J, Antorrena G. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crop Prod. 28: 279–285 (2008)

    Article  Google Scholar 

  16. Youn UY, Shon MS, Kim GN, Katagiri R, Harata K, Kamegai M, Ishida Y, Lee SC. Antioxidant and anti-adipogenic activities of acorn shells. Food Sci. Biotechnol. 25: 1183–1187 (2016)

    Article  CAS  Google Scholar 

  17. Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 107: 1106–1113 (2008)

    Article  CAS  Google Scholar 

  18. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 24: 1043–1048 (2011)

    Article  CAS  Google Scholar 

  19. Wang M, Li J, Rangarajan M, Shao Y, LaVoie EJ, Huang TC, Ho CT. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 46: 4869–4873 (1998)

    Article  CAS  Google Scholar 

  20. Kim CY, Kim GN, Wiacek JL, Chen CY, Kim KH. Selenate inhibits adipogenesis through induction of transforming growth factor-β1 (TGF- β1) signaling. Biochem. Biophys. Res. Commun. 426: 551–557 (2012)

    Article  CAS  Google Scholar 

  21. Kim JH, Lee MR, Jee MK, Kang SK. IFATS collection: selenium induces improvement of stem cell behaviors in human adipose-tissue stromal cells via SAPK/JNK and stemness acting signals. Stem Cells 26: 2724–2734 (2008)

    Article  CAS  Google Scholar 

  22. Barness LA, Opitz JM, Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am. J. Med. Genet. 143A: 3016–3034 (2007)

    Article  CAS  Google Scholar 

  23. Jeon YS, You YH, Jun WJ. Anti-obesity effects of extracts from young Akebia quinata D. leaves. J. Korean Soc. Food Sci. Nutr. 43: 200–206 (2014)

  24. Park HS, Kim GH. Inhibitory effects of Sasa borealis on mechanisms of adipogenesis. J. Korean Soc. Food Sci. Nutr. 42: 837–843 (2013)

    Article  CAS  Google Scholar 

  25. Park HJ, Kim AJ, Cheon YP, Lee MS. Anti-obesity effects of water and ethanol extracts of black ginseng. J. Korean Soc. Food Sci. Nutr. 44: 314–323 (2015)

    Article  CAS  Google Scholar 

  26. Liu GS, Chan EC, Higuchi M, Dusting GJ, Jiang F. Redox mechanisms in regulation of adipocyte differentiation: Beyond a general stress response. Cells 1: 976–993 (2012)

    Article  CAS  Google Scholar 

  27. Lee YJ, Kim DB, Lee JS, Cho JH, Kim BK, Choi HS, Lee BY, Lee OH. Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules 18: 12937–12950 (2013)

    Article  CAS  Google Scholar 

  28. Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY. Fucoxantin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 cells. Phytother. Res. 30: 1802–1808 (2016)

    Article  CAS  Google Scholar 

  29. Wang W, Zhang Y, Lu W, Liu K. Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine. PloS ONE 10: e0120629 (2015)

    Article  Google Scholar 

  30. Yang JW, Kim SS. Ginsenside Rc promotes anti-adipogenic activity on 3T3-L1 aidpocytes by down-regulating C/EBPα and PPARγ. Molecules 20: 1293–1303 (2015)

    Article  Google Scholar 

  31. Kim GS, Park HJ, Woo JH, Koh PO, Min W, Ko YG, Kim CH, Won CK, Cho JH. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complemnt. Altern. Med. 12: 31–40 (2012)

    CAS  Google Scholar 

  32. Lee SG. Effects of chestnut inner shell extract on 3T3-L1 preadipocyte differentiation. Korean J. Orient. Physiol. Pathol. 24: 266–271 (2010)

    Google Scholar 

  33. Li C, Zhou L. Inhibitory effect 6-gingerol on adipogenesis through of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol. In Vitro 30: 394–401 (2015)

    Article  CAS  Google Scholar 

  34. Song Y, Park HJ. Kang SN, Jang SH, Lee SJ, Ko YG, Kim GS, Cho JH. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PloS ONE 8: e69925 (2013)

    Article  CAS  Google Scholar 

  35. Vasconcelos MCBM, Bennett RN, Quideau S, Jacquet R, Rosa EAS, Ferreira-Cardoso JV. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crop Prod. 31: 301–311 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Kyungnam University Foundation Grant, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Cheol Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, UY., Kim, RH., Kim, GN. et al. Antioxidant and anti-adipogenic activities of the nuts of Castanopsis cuspidata var. thunbergii . Food Sci Biotechnol 26, 1407–1414 (2017). https://doi.org/10.1007/s10068-017-0183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0183-2

Keywords

Navigation