Skip to main content
Log in

Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ministry of Food and Drug Safety. 2015 An actual output of functional food. http://www.mfds.go.kr. Accessed Oct. 31, 2016

  2. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J. Ginseng Res. 37: 1–7 (2013)

    Article  Google Scholar 

  3. In G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, Cho BG, Han CK, Park CK, Kwak YS. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J. Ginseng Res. 41: 361–369 (2017)

    Article  Google Scholar 

  4. Gui Y, Ryu GH. Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder). J. Ginseng Res. 38: 146–153 (2014)

    Article  CAS  Google Scholar 

  5. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean red ginseng against viral infection. J. Ginseng Res. 40: 309–314 (2016)

    Article  Google Scholar 

  6. Nam KY. The comparative understanding between red ginseng and white ginsengs processed ginsengs (Panax ginseng C.A. Meyer). J. Ginseng Res. 29: 1–18 (2005)

    Article  Google Scholar 

  7. Ministry of Agriculture, Food and Rural Affairs. Ginseng statistics book. 2015. Available from: http://www.mafra.go.kr. Accessed Oct. 28, 2016.

  8. Ryu GH. Present status of red ginseng products and its manufacturing process. Food Ind. Nutr. 8: 38–42 (2003)

    Google Scholar 

  9. Lee JW. Market trends and prospect of red ginseng products pp. 175. In: 2010 Spring Ginseng Conference. May 7, Olympic Parktel, Seoul, Korea. The Korean Society of Ginseng, Seoul, Korea (2010)

  10. Lee JW. The industry status of red ginseng products pp. 7. In: 2012 Symposium. May 11–12, Korea National College of Agriculture and Fisheries, Jeonju-si, Jeollabuk-do, Korea. The Plant Resources Society of Korea, Jecheon-si, Chungcheongbuk-do, Korea (2012)

  11. Ministry of Agriculture, Food and Rural Affairs. 2013 Market condition report of Korean dairy products. Available from: http://www.mafra.go.kr. Accessed Jan. 11, 2016

  12. The association for packaging and processing technologies. Executive summary and industry perspective. Available from: http://www.pmmi.org. Accessed Oct. 21, 2016

  13. Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol. Biochem. Be. 75: 687–700 (2003)

    Article  CAS  Google Scholar 

  14. Jee HS, Chang KH, Park SH, Kim KT, Paik HD. Morphological characterization, chemical components, and biofunctional activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: a comparative study. Food Rev. Int. 30: 91–111 (2014)

    Article  CAS  Google Scholar 

  15. Zhang S, Wang R, Zeng W, Zhu W, Zhang X, Wu C, Song J, Zheng Y, Chen P. Resource investigation of traditional medicinal plant Panax japonicus (T.Nees) C.A. Mey and its varieties in China. J. Ethnopharmacol. 166: 79–85 (2015)

    Article  Google Scholar 

  16. Yeo CR, Yong JJ, Popovich DG. Isolation and characterization of bioactive polyacetylenes Panax ginseng Meyer roots. J. Pharmaceut. Biomed. 139: 148–155 (2017)

    Article  CAS  Google Scholar 

  17. Choi KT, Yang DC. Pharmacological effects and medicinal components of Korean ginseng (Panax ginseng C.A. Meyer). Korean Ginseng Res. Ind. 6: 2–21 (2012)

    Google Scholar 

  18. Kim DW, Lee YJ, Min JW, Kim YJ, Rho YD, Yang DC. Conversion of acidic polysaccharide and phenolic compound of changed ginseng by 9 repetitive steaming and drying process, and its effects of antioxidation. Korean J. Orient Physiol. Pathol. 23: 121–126 (2009)

    Google Scholar 

  19. Srivastava R, Kulshreshtha DK. Bioactive polysaccharides from plants. Phytochemistry 28: 2877–2883 (1989)

    Article  CAS  Google Scholar 

  20. Kwak YS, Kim YS, Shin HJ, Song YB, Park JD. Anticancer activities by combined treatment of red ginseng acidic polysaccharide (RGAP) and anticancer agents. J. Ginseng Res. 27: 47–51 (2003)

    Article  CAS  Google Scholar 

  21. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 39: 384–391 (2015)

    Article  CAS  Google Scholar 

  22. Oh MH, Park YS, Lee H, Kim NY, Jang YB, Park JH, Kwak JY, Park YS, Park JD, Pyo MK. Comparison of physicochemical properties and malonyl ginsenoside contents between white and red ginseng. Korean J. Pharmacogn. 47: 84–91 (2016)

    CAS  Google Scholar 

  23. Kim E, Jin Y, Kim KT, Lim TG, Jang M, Cho CW, Rhee YK, Hong HD. Effect of high temperature and high pressure on physicochemical properties and antioxidant activity of Korean red ginseng. Korean J. Food Nutr. 29: 438–447 (2016)

    Article  Google Scholar 

  24. Zhang L, Virgous C, Si H. Ginseng and obesity: observations and understanding in cultured cells, animals and humans. J. Nutr. Biochem. 44: 1–10 (2016)

    Article  CAS  Google Scholar 

  25. Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1 K, prepared from Panax ginseng. J. Ginseng Res. 41: 43–51 (2017)

    Article  Google Scholar 

  26. Feng L, Liu XM, Cao FR, Wang LS, Chen YX, Pan RL, Liao YH, Wang Q, Chang Q. Anti-stress effects of ginseng total saponins on hindlimb-unloaded rats assessed by a metabolomics study. J. Ethnopharmacol. 188: 39–47 (2016)

    Article  CAS  Google Scholar 

  27. Sharma J, Goyal PK. Chemoprevention of chemical-induced skin cancer by Panax ginseng root extract. J. Ginseng Res. 39: 265–273 (2015)

    Article  CAS  Google Scholar 

  28. Park D, Bae DK, Jeon JH, Lee J, Oh N, Yang G, Yang YH, Kim TK, Song J, Lee SH, Song BS, Jeon TH, Kang SJ, Joo SS, Kim SU, Kim YB. Immunopotentiation and antitumor effects of a ginsenoside Rg3-fortified red ginseng preparation in mice bearing H460 lung cancer cells. Environ. Toxicol. Phar. 31: 397–405 (2011)

    Article  CAS  Google Scholar 

  29. Lee KH, Bae IY, Park SI, Park JD, Lee HG. Antihypertensive effect of Korean red ginseng by enrichment of ginsenoside Rg3 and arginine-fructose. J. Ginseng Res. 40: 237–244 (2016)

    Article  Google Scholar 

  30. Lee SJ, Lee MJ, Ko YJ, Choi HR, Jeong JT, Choi KM, Cha JD, Hwang SM, Jung HK, Park JH, Lee TB. Effects of extracts of unripe black raspberry and red ginseng on cholesterol synthesis. Korean J. Food Sci. Technol. 45: 628–635 (2013)

    Article  Google Scholar 

  31. Jun YL, Bae CH, Kim D, Koo S, Kim S. Korean red ginseng protects dopaminergic neurons by suppressing the cleavage of p35–p25 in a Parkinson’s disease mouse model. J. Ginseng Res. 39: 148-154 (2015)

    Article  CAS  Google Scholar 

  32. Nguyen CT, Luong TT, Kim GL, Pyo S, Rhee DK. Korean red ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling. J. Ginseng Res. 39: 69–75 (2015)

    Article  CAS  Google Scholar 

  33. Lee Y, Oh S. Administration of red ginseng ameliorates memory decline in aged mice. J. Ginseng Res. 39: 250–256 (2015)

    Article  CAS  Google Scholar 

  34. Lee H, Choi J, Shin SS, Yoon M. Effects of Korean red ginseng (Panax ginseng) on obesity and adipose inflammation in ovariectomized mice. J. Ethnopharmacol. 178: 229–237 (2016)

    Article  CAS  Google Scholar 

  35. Fuzzati N. Analysis methods of ginsenosides. J. Chromatogr. B 812: 119–133 (2004)

    Article  CAS  Google Scholar 

  36. Mroczek T. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors. J. Pharmaceut. Biomed. 129: 155–162 (2016)

    Article  CAS  Google Scholar 

  37. He C, Feng R, Sun Y, Chu S, Chen J, Ma C, Fu J, Zhao Z, Huang M, Shou J, Li X, Wang Y, Hu J, Wang Y, Zhang J. Simultaneous quantification of ginsenoside Rg1 and its metabolites by HPLC-MS/MS: Rg1 excretion in rat bile, urine and feces. Acta Pharm. Sin. B. 6: 593–599 (2016)

    Article  Google Scholar 

  38. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res. 39: 287–298 (2015)

    Article  CAS  Google Scholar 

  39. Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 33: 717–735 (2015)

    Article  CAS  Google Scholar 

  40. Cui L, Wu SQ, Zhao CA, Yin CR. Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes. J. Ginseng Res. 40: 366–374 (2016)

    Article  Google Scholar 

  41. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702–1704 (2000)

    Article  CAS  Google Scholar 

  42. Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100: 208–220 (2015)

    Article  CAS  Google Scholar 

  43. Noh KH, Son JW, Kim HJ, Oh DK. Ginsenosid compound K production from ginseng root extract by a thermostable β-glycosidase form Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73: 316–321 (2009)

    Article  CAS  Google Scholar 

  44. Chang KH, Jee HS, Lee NK, Park SH, Lee NW, Paik HD. Optimization of the enzymatic production of 20(S)-ginsenoside Rg3 from white ginseng extract using response surface methodology. New Biotechnol. 26: 181–186 (2009)

    Article  CAS  Google Scholar 

  45. Wang Y, Choi KD, Yu H, Jin F, Im WT. Production of ginsenoside F1 using commercial enzyme cellulase KN. J. Ginseng Res. 40: 121–126 (2016)

    Article  Google Scholar 

  46. Chi H, Lee BH, You HJ, Park MS, Ji GE. Differential transformation of ginsenosides from Panax ginseng by lactic acid bacteria. J. Microbiol. Biotechn. 16: 1629–1633 (2006)

    CAS  Google Scholar 

  47. Bai Y, Gänzle MG. Conversion of ginsenosides by Lactobacillus plantarum studied by liquid chromatography coupled to quadrupole trap mass spectrometry. Food Res. Int. 76: 709–718 (2015)

    Article  CAS  Google Scholar 

  48. Park SE, Na CS, Yoo SA, Seo SH, Son HS. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 41: 36–42 (2017)

    Article  Google Scholar 

  49. Quan LH, Piao JY, Min JW, Kim HB, Kim SR, Yang DU, Yang DC. Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102. J. Ginseng Res. 35: 344–351 (2011)

    Article  CAS  Google Scholar 

  50. Ku S, You HJ, Park MS, Ji GE. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechn. 26: 1206–1215 (2016)

    Article  CAS  Google Scholar 

  51. Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS. Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of β-glucosidase gene from Paenibacillus mucilaginosus. J. Agr. Food Chem. 64: 2506–2512 (2016)

    Article  CAS  Google Scholar 

  52. Yu H, Liu Q, Zhang C, Lu M, Fu Y, Im WT, Lee ST, Jin F. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44: 772–775 (2009)

    Article  CAS  Google Scholar 

  53. Jo MN, Jung JE, Yoon HJ, Chang KH, Jee HS, Kim KT, Paik HD. Bioconversion of ginsenoside Rb1 to the pharmaceutical ginsenoside compound K using Aspergillus usamii KCTC 6954. Korean J. Microbiol. Biotechnol. 42: 347–353 (2014)

    Article  Google Scholar 

  54. Chang KH, Jo MN, Kim KT, Paik HD. Purification and characterization of a ginsenoside Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239. Int. J. Mol. Sci. 13: 12140–12152 (2012)

    Article  CAS  Google Scholar 

  55. Chang KH, Jo MN, Kim KT, Paik HD. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3. J. Ginseng Res. 38: 47–51 (2014)

    Article  CAS  Google Scholar 

  56. Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J. Ginseng Res. 39: 221–229 (2015)

  57. Kim BH, Kang JH, Lee SY, Cho HJ, Kim YJ, Kim YJ, Ahn SC. Biotransformation of ginseng to compound K by Aspergillus oryzae. J. Life Sci. 16: 136–140 (2006)

    Article  Google Scholar 

  58. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. Purification and properties of a novel β-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces bainier. J. Microbiol. Biotechnol. 18: 1081–1089 (2008)

    CAS  Google Scholar 

  59. Yan Q, Zhou W, Shi XL, Zhou P, Ju DW, Feng MQ. Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces bainier sp. 229. Process Biochem.45: 1550–1556 (2010)

    Article  CAS  Google Scholar 

  60. Ye L, Zhou CQ, Zhou W, Zhou P, Chen DF, Liu XH, Shi XL, Feng MQ. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7. Bioresource Technol. 101: 7872–7876 (2010)

    Article  CAS  Google Scholar 

  61. Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, Oliverira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res. Bull. 125: 30–43 (2016)

    Article  CAS  Google Scholar 

  62. Huang Q, Gao B, Jie Q, Wei BY, Fan J, Zhang HY, Zhang JK, Li XJ, Shi J, Luo ZJ, Yang L, Liu J. Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 66: 306–314 (2014)

    Article  CAS  Google Scholar 

  63. Wang T, Yu X, Qu S, Xu H, Han B, Sui D. Effect of ginsenoside Rb3 on myocardial injury and heart function impairment induced by isoproterenol in rats. Eur. J. Pharmacol. 636: 121–125 (2010)

    Article  CAS  Google Scholar 

  64. Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J. Ginseng Res. 41: 127–133 (2017)

    Article  Google Scholar 

  65. Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci. Res. 64: 306–310 (2009)

    Article  CAS  Google Scholar 

  66. Zhang YX, Wang L, Xiao EL, Li SJ, Chen JJ, Gao B, Min GN, Wang ZP, Wu YJ. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo. Int. Immunopharmacol. 17: 1094–1100 (2013)

    Article  CAS  Google Scholar 

  67. Junmin S, Hongxiang L, Zhen L, Chao Y, Chaojie W. Ginsenoside Rg3 inhibits colon cancer cell migration by suppressing nuclear factor kappa B activity. J. Tradit. Chin. Med. 35: 440–444 (2015)

    Article  Google Scholar 

  68. Lee SJ, Lee WJ, Chang SE, Lee GY. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J. Ginseng Res. 39: 238–242 (2015)

    Article  CAS  Google Scholar 

  69. Zhang Y, Liu QZ, Xing SP, Zhang JL. Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Asian Pac. J. Trop. Med. 9: 180–183 (2016)

    Article  CAS  Google Scholar 

  70. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Bioph. Res. Co. 364: 1002–1008 (2007)

    Article  CAS  Google Scholar 

  71. Yi PF, Bi WY, Shen HQ, Wei Q, Zhang LY, Dong HB, Bai HL, Zhang C, Song Z, Qin QQ, Lv S, Wu SC, Fu BD, Wei XB. Inhibitory effects of sulfated 20(S)-ginsenoside Rh2 on the release of pro-inflammatory mediators in LPS-induced RAW 264.7 cells. Eur. J. Pharmacol. 712: 60–66 (2013)

    Article  CAS  Google Scholar 

  72. Han S, Jeong AJ, Yang H, Kang KB, Lee H, Yi EH, Kim BH, Cho CH, Chung JW, Sung SH, Ye SK. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J. Ethnopharmacol. 194: 83–90 (2016)

    Article  CAS  Google Scholar 

  73. Kang S, Im K, Kim G, Min H. Antiviral activity of 20(R)-ginsenoside Rh2 against murine gammaherpesvirus. J. Ginseng Res. in press (2017).

  74. Mai TT, Moon JY, Song YW, Viet PQ, Phuc PV, Lee JM, Yi TH, Cho M, Cho SK. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 321: 144–153 (2012)

    Article  CAS  Google Scholar 

  75. Siraj FM, SathishKumar N, Kim YJ, Kim SY, Yang DC. Ginsenoside F2 possesses anti-obesity activity via binding with PPARγ and inhibiting adipocyte differentiation in the 3T3-L1 cell line. J. Enzym. Inhib. Med. Ch. 30: 9–14 (2015)

    Article  CAS  Google Scholar 

  76. Park SH, Seo W, Eun HS, Kim SY, Jo E, Kim MH, Choi WM, Lee JH, Shim YR, Cui CH, Kim SC, Hwang CY, Jeong WI. Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem. Bioph. Res. Co. 478: 1713–1719 (2016)

    Article  CAS  Google Scholar 

  77. Peng L, Sun S, Xie LH, Wicks SM, Xie JT. Ginsenoside Re: Pharmacological effects on cardiovascular system. Cardiovasc. Ther. 30: e183-e188 (2012)

    Article  CAS  Google Scholar 

  78. Gao Y, Yang MF, Su YP, Jiang HM You XJ, Yang YJ, Zhang HL. Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production. J. Ethnopharmacol. 147: 509–516 (2013)

    Article  CAS  Google Scholar 

  79. Nemmani KVS, Ramarao P. Ginsenoside Rf potentiates U-50, 488H-induced analgesia and inhibits tolerance to its analgesia in mice. Life Sci. 72: 759–768 (2003)

    Article  CAS  Google Scholar 

  80. Liu Z, Qi Y, Cheng Z, Zhu X, Fan C, Yu SY. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience 322: 358–369 (2016)

    Article  CAS  Google Scholar 

  81. Xin Y, Wei J, Chunhua M, Danhong Y, Jianguo Z, Zongqi C, Jian-an B. Protective effects of ginsenoside Rg1 against carbon tetrachloride-induced liver injury in mice through suppression of inflammation. Phytomedicine 23: 583–588 (2016)

    Article  CAS  Google Scholar 

  82. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology 101: 480–489 (2016)

    Article  CAS  Google Scholar 

  83. Li Y, Wang F, Luo Y. Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1-independent autophagy in mice. J. Surg. Res. 207: 181–189 (2017)

    Article  CAS  Google Scholar 

  84. Li N, Liu B, Dluzen DE, Jin Y. Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J. Ethnopharmacol. 111: 458–463 (2007)

    Article  CAS  Google Scholar 

  85. Zhang G, Liu A, Zhou Y, San X, Jin T, Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol. 115: 441–448 (2008)

    Article  CAS  Google Scholar 

  86. Kang HJ, Huang YH, Lim HW, Shin D, Jang K, Lee Y, Kim K, Lim CJ. Stereospecificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes. J. Photoch. Photobio. B 165: 232–239 (2016)

    Article  CAS  Google Scholar 

  87. Zheng H, Jeong Y, Song J, Ji GE. Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 11: 511–518 (2011)

    Article  CAS  Google Scholar 

  88. Yoon JH, Choi YJ, Lee SG. Ginsenoside Rh1 suppresses matrix metalloproteinase-1 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells. Eur. J. Pharmacol. 679: 24–33 (2012)

    Article  CAS  Google Scholar 

  89. Lee EH, Cho SY, Kim SJ, Shin ES, Chang HK, Kim DH, Yeom MH, Woe KS, Lee J, Sim YC, Lee TR. Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2. J. Invest. Dermatol. 121: 607–613 (2003)

    Article  CAS  Google Scholar 

  90. Wu CF, Liu YL, Song M, Liu W, Wang JH, Li X, Yang JY. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice. Pharmacol. Biochem Be. 76: 103–109 (2003)

    Article  CAS  Google Scholar 

  91. Wang CM, Liu MY, Wang F, Wei MJ, Wang S, Wu CF, Yang JY. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer’s disease. Pharmacol. Biochem Be. 106: 57–67 (2013)

    Article  CAS  Google Scholar 

  92. Wang X, Wang C, Wang J, Zhao S, Zhang K, Wang J, Zhang W, Wu C, Yang J. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology 79: 642–656 (2014)

    CAS  Google Scholar 

  93. Kim S, Oh MH, Kim BS, Kim WI, Cho HS, Park BY, Park C, Shin GW, Kwon J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J. Ginseng Res. 39: 365–370 (2015)

    Article  CAS  Google Scholar 

  94. Xiao-Hong Z, Xian-Xiang XU, Tao XU. Ginsenoside Ro suppresses interleukin-1β-induced apoptosis and inflammation in rat chondrocytes by inhibiting NF-κB. Chin. J. Nat. Medicines 13: 283–289 (2015)

    Article  Google Scholar 

  95. Walstra P, Wouters JTM, Geurts TJ. Dairy science and technology. 2th ed. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA. pp. 3–16 (2006)

  96. Spreer E. Milk and dairy product technology. Marcel Dekker Inc., New York, NY, USA. pp. 3–337 (1998)

    Google Scholar 

  97. Lee SS, Park JM, Oh HI, Kwak HS. Optimization of saponin extraction conditions in ginseng milk using response surface methodology. J. Ginseng Res. 18: 53–59 (1994)

    Google Scholar 

  98. Tárrega A, Salvador A, Meyer M, Feuillère N, Ibarra A, Roller M, Terroba D, Madera C, Iglesias JR, Echevarría J, Fiszman S. Active compounds and distinctive sensory features provided by American ginseng (Panax quinquefolius L.) extract in a new functional milk beverage. J. Dairy Sci. 95: 4246–4255 (2012)

    Article  CAS  Google Scholar 

  99. Bea JS, Lee HJ, Lee US, Hong ST. Development of red ginseng milk containing lactoferrin (abstract no. P3-61). In: Abstracts: 2010 International symposium and annual meeting. October 27–29, Hotel Inter-Burgo, Daegu, Korea. The Korean Society of Food Science and Nutrition, Seoul, Korea (2010)

  100. Park R, Choi KM, Ryu MS, Park BH, Jeong MR, Yoo BW. Functional milk comprising Panax ginseng concentrate and cyclodextrin. Korea Patent 10-1313640 (2013)

  101. Chung BH, Huh J. Red ginseng milk beverage containing black garlic and method for preparing thereof. Korea Patent 10-1701809 (2017)

  102. Jung JE, Yoon HJ, Yu HS, Lee NK, Jee HS, Paik HD. Physicochemical and antioxidant properties of milk supplemented with red ginseng extract. J. Dairy Sci. 98: 95–99 (2015)

    Article  CAS  Google Scholar 

  103. Yildiz F. Development and manufacture of yogurt and other functional dairy products. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA. pp. 1–45 (2010)

  104. Muehlhoff E, Bennett A, McMahon D. Milk and dairy products in human nutrition. Food and agriculture organization of the United Nations, Rome, Italy. pp. 41–102 (2013)

    Google Scholar 

  105. Chandan RC, Kilara A. Manufacturing yogurt and fermented milks. 2th ed. Wiley-Blackwell, John Wiley & Sons, Ltd. The Atrium, Southern Gate, Chichestesr, West Sussex, UK. pp. 195–295 (2013)

  106. Goh JS, Chae YS, Gang CG, Kwon IK, Choi M, Lee SK, Kim GY, Ahn JK. Studies on development of ginseng-yogurt and it’s health effect. II. Effect of ginseng-yogurt on the blood glucose, serum cholesterol and inhibition of cancer in mouse. Korean J. Dairy Sci. 16: 253–261 (1994)

    Google Scholar 

  107. Kim JW. Studies on the characteristics of liquid yoghurt from milk added with ginseng. J. Agr. Sci. 23: 219–226 (1996)

    Google Scholar 

  108. Kim JW. Utilization of ginseng products in the manufacture of curd yoghurt. J. Agr. Sci. 26: 31–38 (1999)

    Google Scholar 

  109. Lee IS, Paek KY. Preparation and quality characteristics of yogurt added with cultured ginseng. Korean J. Food Sci. Technol. 35: 235–241 (2003)

    Google Scholar 

  110. Kim NY, Han MJ. Development of ginseng yogurt fermented by Bifidobacterium spp. Korean J. Food Cook. Sci. 21: 575–584 (2005)

    Google Scholar 

  111. Kim DH, Han MJ, Choo MK. Ginseng fermented by lactic acid bacterium, yoghurt containing the same, and lactic acid bacteria used in the preparation thereof. Korea Patent 10-0497895 (2005)

  112. Jeong YH, Kang IJ. Method for producing functional fermented milk using vinegar hydrolysis ginseng. Korea Patent 10-2009-0056182 (2009)

  113. Kim KT, Lee YC, Noh JH, Kim YC, Choi SY, Lee YK Cho CW, Lee MH, Kim SW, Chon YI, Hong JC, Song GR, Seong WJ, Jung YJ, Cho MH. Fermented ginseng yoghurt drink composition and preparation method thereof. Korea Patent 10-1158506 (2012)

  114. Hekmat S, Cimo A, Soltani M, Lui E, Reid G. Microbial properties of probiotic fermented milk supplemented with ginseng extracts. Food Nutr. Sci. 4: 392–397 (2013)

    Article  CAS  Google Scholar 

  115. Cimo A, Soltani M, Lui E, Hekmat S. Fortification of probiotic yogurt with ginseng (Panax quinquefolius) extract. J. Food Nutr. Disor. 2: 1–5 (2013)

    Google Scholar 

  116. Lee SB, Ganesan P, Kwak HS. Comparison of nanopowdered and powdered ginseng-added yogurt on its physicochemical and sensory properties during storage. Korean J. Food Sci. An. 33: 24–30 (2013)

    Article  Google Scholar 

  117. Bae HC, Nam MS. Properties of the mixed fermentation milk added with red ginseng extracts. Korean J. Food Sci. An. 26: 127–135 (2006)

    Google Scholar 

  118. Kim SI, Ko SH, Lee YJ, Choi HY, Han YS. Antioxidant activity of yogurt supplemented with red ginseng extract. Korean J. Food Cook. Sci. 24: 358–366 (2008)

    Google Scholar 

  119. Choi KM, Yoo BW, Kim JH, Kim GI, Jang SM, Jeong HK, Choi HY, Kim KH, Kim MJ. Red ginseng yoghurt comprising red ginseng concentrate. Korea Patent 10-1357686 (2014)

  120. Jung J, Paik HD, Yoon HJ, Jang HJ, Jeewanthi RKC, Jee HS, Li X, Lee NK, Lee SK. Physicochemical characteristics and antioxidant capacity in yogurt fortified with red ginseng extract. Korean J. Food Sci. Anim. 36: 412–420 (2016)

    Article  Google Scholar 

  121. Fox PF, Guinee TP, Cogan TM, McSweeney PLH. Fundamentals of cheese science. An Aspen Publication, Aspen Publishers Inc., Gaithersburg, MD, USA. pp. 1–544 (2000)

    Google Scholar 

  122. Stromblad J. Dairy processing handbook. Tetra Pak Korea, Yongsan-gu, Seoul, Korea (2010)

    Google Scholar 

  123. Park JH, Moon HJ, Oh JH, Lee JH, Jung HK, Choi KM, Cha JD, Lim JY, Han SB, Lee TB, Lee MJ, Choi HR. Changes in the functional components of Lactobacillus acidophilus-fermented red ginseng extract and its application to fresh cheese production. Korean J. Dairy Sci. Technol. 32: 47–53 (2014)

    Google Scholar 

  124. Nam HS, Kim IH, Moon SE, Jo SJ, Lee HY. Cheese manufacturing methods, including ginseng, and it contained. Korea Patent 10-1608146 (2016)

  125. Choi KH, Min JY, Ganesan P, Bae IH, Kwak HS. Physicochemical and sensory properties of red ginseng extracts or red ginseng hydrolyzates-added asiago cheese during ripening. Asian Aust. J. Anim. 28: 120–126 (2015)

    Article  CAS  Google Scholar 

  126. Choi KH, Yoo SH, Kwak HS. Comparison of the physicochemical and sensory properties of asiago cheeses with added nano-powdered red ginseng and powdered red ginseng during ripening. Int. J. Dairy Technol. 67: 348–357 (2014)

    Article  CAS  Google Scholar 

  127. Chung BH, Huh J. Method for preparing red ginseng cheese containing black garlic. Korea Patent 10-1701811 (2017)

  128. Chung HK, Park JH, Huh CK, Choi HY, Oh JH, Lee JH, Moon HJ, Choi YJ, Yang HS, Kim KH, Choi KM, Cha JD, Hwang SM, Kang JL, Lee TB, Lee MJ, Lee SJ. Manufacturing method for cheese using red ginseng and Rubus coreanus. Korea Patent 10-1631264 (2016)

Download references

Acknowledgements

This research was supported by High Value added Food Technology Development Program, Ministry of Agriculture, Food and Rural Affairs (314073-03) and the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Lee, NK. & Paik, HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 26, 1155–1168 (2017). https://doi.org/10.1007/s10068-017-0159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0159-2

Keywords

Navigation