Skip to main content
Log in

Determination of matrix effects occurred during the analysis of organochlorine pesticides in agricultural products using GC-ECD

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Matrix effects observed during the multiresidue analysis of seven organochlorine pesticides in six different agricultural products with GC-ECD were assessed. The presence of matrix coextractives, a major cause of observed matrix effects, directly and/or indirectly influenced the chromatographic responses of some pesticides. Two types of external calibrations, solvent calibration (SC) and matrixmatched calibration (MC), were used to assess matrix effects. Greater matrix effects were observed at the lower concentrations of each pesticide. The extent of matrix effects varied unpredictably with matrix type. Among the analyzed pesticides, iprodione, cyhalothrin, and cypermethrin exhibited greater matrix effects (>150%) for almost all matrices. The pesticide recovery rates obtained with MC were not statistically different from a 100% recovery rate in most samples, which indicates that MC may diminish the overestimates occurred due to matrix effects in GC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schenck FJ, Wong JW. Determination of pesticides in food of vegetable origin. pp.151–176. In: Analysis of pesticides in food and environmental samples. Tadeo JL (ed). CRC Press, Inc., Boca Ranton, FL, USA (2008)

    Google Scholar 

  2. Menkissoglu-Spiroudi U, Fotopoulou A. Matrix effect in gas chromatographic determination of insecticides and fungicides in vegetables. Int. J. Environ. An. Ch. 84: 15–27 (2004)

    Article  CAS  Google Scholar 

  3. Egea Gonzalez FJ, Hernandez Torres ME, Almansa Lopez E, Cuadros-Rodriguez L, Martinez vidal JL. Matrix-effects of vegetable commodities in electroncapture detection applied to pesticide multiresidue analysis. J. Chromatogr. 966: 155–165 (2002)

    Article  CAS  Google Scholar 

  4. Erney DR, Gillespie AM, Gilvydis DM, Poole CF. Explanation of the matrixinduced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J. Chromatogr. 638: 57–63 (1993)

    Article  CAS  Google Scholar 

  5. Erney DR, Pawlowski TM, Poole CF. Matrix-induced peak enhancement of pesticides in gas chromatography: Is there a solution? J. High Res. Chromatog. 20: 375–378 (1997)

    Article  CAS  Google Scholar 

  6. Hajslova J, Holadova K, Kocourek V, Poustka J, Godula M, Cuhra P, Kempny M. Matrix-induced effects: A critical point in the gas chromatographic analysis of pesticide residues. J. Chromatogr. 800: 283–295 (1998)

    Article  CAS  Google Scholar 

  7. Hajslova J, Zrostlikova J. Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. J. Chromatogr. 1000: 181–197 (2003)

    Article  CAS  Google Scholar 

  8. Martinez Vidal JL, Arrebola FJ, Garrido Frenich A, Martinez Fernandez J, Mateu-Sanchez M. Validation of a gas chromatographic-tandem mass spectrometric method for analysis of pesticide residues in six food commodities. Selection of a reference matrix for calibration. Chromatographi. 59: 321–327 (2004)

    Google Scholar 

  9. Georgakopoulos P, Foteinopoulou E, Athanasopoulos P, Drosinos E, Skandamis P. Recoveries of four representative organophosphorus pesticides from 18 plant products belonging to different botanical categories: Implication for matrix effects. Food Addit. Contam. 24: 360–368 (2007)

    Article  CAS  Google Scholar 

  10. Poole CF. Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. J. Chromatogr. 1158: 241–250 (2007)

    Article  CAS  Google Scholar 

  11. Freitas SS, Lancas FM. Matrix effects observed during pesticides residue analysis in fruits by GC. J Sep. Sci. 32: 3698–3705 (2009)

    Article  CAS  Google Scholar 

  12. Sousa FA, Costa AIG, Queiroz MELR, Teofilo RF, Neves AA, Pinho GP. Evaluation of matrix effect on the GC response of eleven pesticides by PCA. Food Chem. 135: 179–185 (2012)

    Article  Google Scholar 

  13. Rahman MM, El-Aty AMA, Shim JH. Matrix enhancement effect: A blessing or a curse for gas chromatography? -A review. Anal. Chim. Act. 801: 14–21 (2013)

    Article  CAS  Google Scholar 

  14. Godula M, Hajslova J, Alterova K. Pulsed splitless injection and the extent of matrix effects in the analysis of pesticides. J. High Res. Chromatog. 22: 395–402 (1999)

    Article  CAS  Google Scholar 

  15. Schenck FJ, Lehotay SJ. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? J. Chromatogr. 868: 51–61 (2000)

    Article  CAS  Google Scholar 

  16. Anastassiades M, Mastovska K, Lehotay SJ. Evalution of analyte protectants to improve gas chromatographic analysis of pesticides. J. Chromatogr. 1015: 163–184 (2003)

    Article  CAS  Google Scholar 

  17. Sanchez-Brunete C, Albero B, Martin G, Tadeo JL. Determination of pesticide residues by GC-MS using analyte protectants to counteract the matrix effect. Anal. Sci. 21: 1291–1296 (2005)

    Article  CAS  Google Scholar 

  18. Mastovska K, Lehotay SJ, Anastassiades M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal. Chem. 77: 8129–8137 (2005)

    Article  CAS  Google Scholar 

  19. Garrido Frenich A, Martinez Vidal JL, Fernandez Moreno JL, Romero-Gonzalez R. Compensation for matrix effects in gas chromatography-tandem mass spectrometry using a single point standard addition. J. Chromatogr. 1216: 4798–4808 (2009)

    Article  CAS  Google Scholar 

  20. Rahman MM, Choi JH, El-Aty AMA, Abid MDN, Park JH, Na TW, Kim YD, Shim JH. Pepper leaf matrix as a promising analyte protectant prior to the analysis of thermolabile terbufos and its metabolites in pepper using GC-FPD. Food Chem. 133: 604–610 (2012)

    Article  CAS  Google Scholar 

  21. Sousa FA, Costa AIG, Queiroz MELR, Teofilo RF, Pinho GP, Neves AA. Influence of pH and matrix components in the chromatographic response of pesticides. Chromatographi. 76: 67–73 (2013)

    Article  CAS  Google Scholar 

  22. Quality control procedure for pesticide residue analysis. Document SANCO/10232/2006. European Commission, Brussel, Belgium (2006)

  23. Lee YD. Practical guide of pesticide residues analysis method in food code. 3rd ed. National Institute of Food and Drug Safety Evaluation, Osong, Korea (2012)

    Google Scholar 

  24. Statistics Mentor. Available from: http://www.statisticsmentor.com/tables/table_t.htm. Accessed Dec. 5, 2014.

  25. Cuadros-Rodriguez L, Gamiz-Gracia L, Almansa-Lopez EM, Bosque-Sendra JM. Calibration in chemical measurement processes. II. A methodological approach. Trends Anal. Chem. 20: 620–636 (2001)

    Article  CAS  Google Scholar 

  26. Cuadros-Rodriguez L, Garcia-Campana AM, Almansa-Lopez E, Egea-Gonzalez FJ, Castro Cano ML, Garrido Frenich A, Martinez-Vidal JL. Correction function on biased results due to matrix effects application to the routine analysis of pesticide residues. Anal. Chim. Act. 478: 281–301 (2003)

    Article  CAS  Google Scholar 

  27. Cai CP, Liang M, Wen RR. Rapid multiresidue screening method for organophosphate pesticides in vegetables. Chromatographi. 40: 417–420 (1995)

    Article  CAS  Google Scholar 

  28. Schenck FJ, Lehotay SJ, Vega V. Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. J. Sep. Sci. 25: 883–890 (2002)

    Article  CAS  Google Scholar 

  29. Sugitate K, Nakamura S, Orikata N, Mizukoshi K, Nakamura M, Toriba A, Hayakawa K. Search of components causing matrix effects on GC/MS for pesticide analysis in food. J. Pest. Sci. 37: 156–163 (2012)

    Article  CAS  Google Scholar 

  30. Hill ARC, Reynolds SL. Guidelines for in-house validation of analytical methods for pesticide residues in food and animal feeds. Analys. 124: 953–958 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NH., Lee, JS., Park, KA. et al. Determination of matrix effects occurred during the analysis of organochlorine pesticides in agricultural products using GC-ECD. Food Sci Biotechnol 25, 33–40 (2016). https://doi.org/10.1007/s10068-016-0005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0005-y

Keywords

Navigation