Skip to main content
Log in

Comparison of bioactive compound contents and in vitro and ex vivo antioxidative activities between peel and flesh of pear (Pyrus pyrifolia Nakai)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

We compared chemical constituents and antioxidative activities between the flesh and peel of two Asian pears (Pyrus pyrifolia Nakai cv. Niitaka and Chuhwangbae). Total phenolic, flavonoid, and ascorbic acid contents in the peels were higher than those in the flesh. However, total tocopherol content between peels and flesh was not different. The peels exhibited higher free radical scavenging activities in the in vitro models of DPPH, ABTS+, nitrite radicals, and reducing capabilities than those of the flesh. Pear fruit extracts significantly prevented 3T3-L1 cells from undergoing H2O2-induced oxidation and the effect was higher by the peel extract than by the flesh extract. In addition, blood plasma of rats administered the peel extract showed higher antioxidative activity than that of rats administered the flesh extract. These results suggest that consumption of unpeeled Asian pear fruit may effectively increase antioxidant activity in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 70: R11–R19 (2005)

    Article  CAS  Google Scholar 

  2. Merzlyak MN, Solovchenko AE, Chivkunova OB. Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development. Plant Physiol. Bioch. 42: 679–684 (2002)

    Article  Google Scholar 

  3. Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr. J. 3: 1–15 (2004)

    Article  Google Scholar 

  4. Goodman M, Bostick RM, Kucuk O, Jones DP. Clinical trials of antioxidants as cancer prevention agents: Past, present, and future. Free Radical Bio. Med. 51: 1068–1084 (2011)

    Article  CAS  Google Scholar 

  5. Nijveldt RJ, Nood E, Hoorn DEC, Boelens PG, Norren K, Leeuwen PAM. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74: 418–425 (2001)

    CAS  Google Scholar 

  6. Contreras-Calderón J, Calderon-Jaimes L, Guerra-Hernández E, García-Villanova B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel, and seed from 24 exotic fruits from Colombia. Food Res. Int. 44: 2047–2053 (2011)

    Article  Google Scholar 

  7. Lee KH, Cho JY, Lee HJ, Ma YK, Kwon J, Park SH, Lee SH, Cho JA, Kim WS, Park KH, Moon JH. Hydroxycinnamoylmalic acids and their methyl esters from pear (Pyrus pyrifolia Nakai) fruit peel. J. Agr. Food Chem. 59: 10124–10128 (2011)

    Article  CAS  Google Scholar 

  8. Lee KH, Cho JY, Lee HJ, Park KY, Ma YK, Lee SH, Cho JA, Kim WS, Park KH, Moon JH. Isolation and identification of phenolic compounds from an Asian pear (Pyrus pyrifolia Nakai) fruit peel. Food Sci. Biotechnol. 20: 1539–1545 (2011)

    Article  CAS  Google Scholar 

  9. Lee YG, Cho JY, Kim CM, Lee SH, Kim WS, Jeon TL, Park KH, Moon JH. Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia Nakai) fruit. Food Sci. Biotechnol. 22: 803–810 (2013)

    Article  CAS  Google Scholar 

  10. Cho JY, Kim CM, Lee HJ, Lee SH, Cho JA, Kim WS, Park KH, Moon JH. Caffeoyl triterpenes from pear (Pyrus pyrifolia Nakai) fruit peels and their antioxidative activities against oxidation of rat blood plasma. J. Agr. Food Chem. 61: 4563–4569 (2013)

    Article  CAS  Google Scholar 

  11. Li X, Zhang JY, Gao WY, Wang Y, Wang HY, Cao JG, Huang LQ. Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars. J. Agr. Food Chem. 60: 8737–8744 (2012)

    Google Scholar 

  12. Li X Zhang J, Gao W, Wang H. Study on chemical composition, anti-inflammatory and anti-microbial activities of extracts from Chinese pear fruit (Pyrus bretschneideri Rehd.). Food Chem. Toxicol. 50: 3673–3679 (2012)

    Article  CAS  Google Scholar 

  13. Tanriöven D, Eksi A. Phenolic compounds in pear juice from different cultivars. Food Chem. 93: 89–93 (2005)

    Article  Google Scholar 

  14. Branca MS, Paula BA. Phenolic profile in the evaluation of commercial quince jellies authenticity. Food Chem. 71: 281–285 (2000)

    Article  Google Scholar 

  15. Cui T, Nakamura K, Ma L, Li JZ, Kayahara H. Analyses of arbutin and chlorogenic acid, the major phenolic constituents in oriental pear. J. Agr. Food Chem. 53: 3882–3887 (2005)

    Article  CAS  Google Scholar 

  16. Guzmán-Maldonado SH, Marales-Montelongo AL, Mondragón-Jacobo C, Herrera-Hernández G, Guevara-Lara F, Reynoso-Camacho R. Physicochemical, nutritional, and functional characterization of fruits Xoconostle (Opuntia matudae) pears from Central-México region. J. Food Sci. 75: C485–C492 (2010)

    Article  Google Scholar 

  17. Leontowicz M, Gorinstein S, Leontowicz H, Krzeminski R, Lojek A, Katrich E, Ciz M, Martin-Belloso O, Soliva-Fortuny R, Haruenkit R. Apple and pear peel and pulp and their influence on plasma lipids and antioxidant potentials in rats fed cholesterolcontaining diets. J. Agr. Food Chem. 51: 5780–5785 (2003)

    Article  CAS  Google Scholar 

  18. Lin LZ, Harnly JN. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). J. Agr. Food Chem. 56: 9094–9101 (2008)

    Article  CAS  Google Scholar 

  19. Salta J, Martins A, Santos RG, Neng NR, Nogueira JMP, Justino J, Rauter AP. Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars — A comparative study. J. Funct. Foods 2: 153–157 (2010)

    Article  CAS  Google Scholar 

  20. Abe K, Saito T, Terai O, Sato Y, Kotobuki K. Genotypic difference for the susceptibility of Japanese, Chinese and European pears to Venturia nashicola, the cause of scab on Asian pears. Plant Breeding 127: 407–412 (2008)

    Article  Google Scholar 

  21. Westwood MN. Pear germplasm of the new national clonal repository: It’s evaluation and use. Acta Hortic. 124: 57–65 (1982)

    Google Scholar 

  22. Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genet. Resour. Crop Ev. 45: 533–539 (1998)

    Article  Google Scholar 

  23. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  24. Lee YC, Hwang KH, Han DH, Kim SD. Compositions of Opuntia ficus-indica. Korean J. Food Sci. Technol. 29: 847–853 (1997)

    Google Scholar 

  25. Asami DK, Hong YY, Barrett DM, Mitchell AE. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agr. Food Chem. 51: 1237–1241 (2003)

    Article  CAS  Google Scholar 

  26. Kim SH, Kim GA, Cho JY, Lee HJ, Kim SJ, Park KH, Moon JH. Changes in biologically active compounds and antioxidant activity during manufacturing of ddeok cha. Korean. J. Tea Sci. Soc. 18: 32–40 (2012)

    Google Scholar 

  27. Yamaguchi T, Takamura H, Matoba T, Terao J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotech. Bioch. 62: 1201–1204 (1998)

    Article  CAS  Google Scholar 

  28. Dudonne S, Virtac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food. Chem. 57: 1768–1774 (2009)

    Article  CAS  Google Scholar 

  29. Gray JI, Dugan J. Inhibition of N-ntrosamine formation in model food systems. J. Food Sci. 40: 981–984 (1975)

    Article  CAS  Google Scholar 

  30. Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44: 307–315 (1986)

    Article  CAS  Google Scholar 

  31. Gomes A, Fernandes E, Lima JLFC. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Bioph. Meth. 65: 45–80 (2005)

    Article  CAS  Google Scholar 

  32. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2,7-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5: 227–231 (1992)

    Article  CAS  Google Scholar 

  33. Slater TF, Sawyer B, Straeuli U. Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77: 383–393 (1963)

    Article  CAS  Google Scholar 

  34. Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham HS, Lee HJ, Park KH, Moon JH. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 125: 55–62 (2011)

    Article  CAS  Google Scholar 

  35. Arai H, Terao J, Abdalla DSP, Suzuki T, Takama K. Coulometric detection in high-performance liquid chromatographic analysis of cholesteryl ester hydroperoxides. Free Radical Bio. Med. 20: 365–371 (1996)

    Article  CAS  Google Scholar 

  36. Yamamoto Y, Niki E. Presence of cholesteryl ester hydroperoxides in human blood plasma. Biochem. Bioph. Res. Co. 165: 988–993 (1989)

    Article  CAS  Google Scholar 

  37. Upston JM, Niu X, Brown AJ, Mashima R, Wang H, Senthilmohan R, Kettle AJ, Dean RT, Stocker R. Disease stage-dependent accumulation of lipid and protein oxidation products in human atherosclerosis. Am. J. Pathol. 160: 701–710 (2002)

    Article  CAS  Google Scholar 

  38. Leitinger N. Cholesteryl ester oxidation products in atherosclerosis. Mol. Aspects Med. 24: 239–250 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hak Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Cho, JY., Jeong, H.Y. et al. Comparison of bioactive compound contents and in vitro and ex vivo antioxidative activities between peel and flesh of pear (Pyrus pyrifolia Nakai). Food Sci Biotechnol 24, 207–216 (2015). https://doi.org/10.1007/s10068-015-0028-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0028-9

Keywords

Navigation