Skip to main content
Log in

High efficacy bioconversion of starch to lactic acid using an amylolytic lactic acid bacterium isolated from Thai indigenous fermented rice noodles

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Amylolytic lactic acid bacterium (ALAB) strain S21 was isolated from Thai indigenous fermented rice noodles and identified as Lactobacillus plantarum, based on 16S rDNA sequence and recA gene analysis. L. plantarum S21 exhibited a specific growth rate (μ) of 0.24 1/h in modified MRS broth containing 10 g/L of starch as the sole carbon source, and a high efficacy in producing lactic acid (9.41, 24.48, 41.84, 74.33, and 94.04 g/L from 10, 25, 50, 75, and 100 g/L of cassava starch, respectively), which are higher values than previously reported for ALAB. Crude amylase from L. plantarum S21 had broad pH stability (3.5–8.0), and hydrolyzed starch to maltose and glucose as the major and minor products. L. plantarum S21 should be considered useful for industrial bioconversion of starch to lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller C, Fosmer A, Rush B, McMullin T, Beacom D, Suomimen P. Industrial production of lactic acid. pp. 179–188. In: Comprehensive Biotechnology. Moo-Yong M (ed). Elsevier, Amsterdam, The Netherlands (2011)

    Chapter  Google Scholar 

  2. John RP, Anisha GS, Nampoothiri KM, Pandey A. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145–152 (2009)

    Article  CAS  Google Scholar 

  3. Wee YJ, Kim JN, Ryu HW. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44: 163–172 (2006)

    CAS  Google Scholar 

  4. Abdel-Rahman MA, Tashiro Y, Sonomoto, K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. J. Biotechnol. 156: 286–301 (2011)

    Article  CAS  Google Scholar 

  5. Reddy G, Altaf Md, Naveena BJ, Venkateshwar M, Vijay Kumar E. Amylolytic bacterial lactic acid fermentation-A review. Biotechnol. Adv. 26: 22–34 (2008)

    Article  CAS  Google Scholar 

  6. Ohkouchi Y, Inoue Y. Direct production of l(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresource Technol. 97: 1554–1562 (2006)

    Article  CAS  Google Scholar 

  7. Shibata K, Flores DM, Kobayashi G, Sonomoto K. Direct lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microb. Technol. 41: 149–155 (2007)

    Article  CAS  Google Scholar 

  8. Xiaodong W, Xuan G, Rakshit SK. Direct fermentation of lactic acid from cassava or other starch substrates. Biotechnol. Lett. 9: 841–843 (1997)

    Article  Google Scholar 

  9. Holt JG. Bergey’s Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins, Baltimore, MD, USA. pp. 559–567 (1994)

    Google Scholar 

  10. Nishiguchi MK, Doukakis P, Egan M, Kizirian D, Phillips A, Prendini L, Rosenbaum HC, Torres E, Wyner Y, DeSalle R, Giribet G. DNA isolation procedures. pp. 249–287. In: Techniques in Molecular Systematics and Evolution. Desalle GR, Garibet G, Wheeler W (eds). Birkhäuser Verlag Basel, Switzerland (2002)

    Chapter  Google Scholar 

  11. Thompson JD, Gibson TJ, Plewniak, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882 (1997)

    Article  CAS  Google Scholar 

  12. Page RDM. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358 (1996)

    CAS  Google Scholar 

  13. Torriani S, Felis G, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene-derived primers. Appl. Environ. Microbiol. 67: 3450–3454 (2001)

    Article  CAS  Google Scholar 

  14. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  15. Dobois M, Gilles KA, Hamilton JK, Rebers PA, Rebers PA. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  Google Scholar 

  16. Litchfield JH. Lactic acid microbially produced. pp. 362–372. In: Encyclopedia of Microbiology. Schaechter M (ed). Elsevier, Oxford, UK (2009)

    Chapter  Google Scholar 

  17. Fu W, Mathews AP. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH, substrate and oxygen. Biochem. Eng. J. 3: 163–170 (1999)

    Article  CAS  Google Scholar 

  18. Giraud E, Lelong B, Raimbault M. Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 36: 96–99 (1991)

    Article  CAS  Google Scholar 

  19. Keatkrai J, Jirapakkul W. Volatile profile of Khanom-Jeen, Thai fermented rice noodles and the changes during the fermentation process. J. Soc. Sci. Thailand 36: 46–51 (2010)

    Article  CAS  Google Scholar 

  20. Leroy F, Vuyst LD. Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: A nutrient depletion model for the growth of lactic acid bacteria. Appl. Environ. Microbiol. 67: 4407–4413 (2001)

    Article  CAS  Google Scholar 

  21. Kwon S, Lee PC, Lee EG, Chang YK, Chang N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microb. Technol. 26: 209–215 (2000)

    Article  CAS  Google Scholar 

  22. Castillo Martinez FA, Balciunas EM, Salgado JM, Dominguez-Gonzalez JM, Converti A, de Souza Oliveira RP. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 30: 70–83 (2013)

    Article  Google Scholar 

  23. Giraud E, Champailler A, Raimbault M. Degradation of raw starch by a wild amylolytic strain of Lactobacillus plantarum. Appl. Environ. Microbiol. 60: 4319–4323 (1994)

    CAS  Google Scholar 

  24. Panda SH, Ray RC. Direct conversion of raw starch to lactic acid by Lactobacillus plantarum MTCC 1407 in semi-solid fermentation using sweet potato (Ipomoea batatas L.) flour. J. Sci. Ind. Res. 67: 531–537 (2008)

    CAS  Google Scholar 

  25. Vishnu C, Seenayya G, Reddy G. Direct fermentation of various pure and crude starch substrates to L(+) lactic acid using Lactobacillus amylophilus GV6. World J. Microbiol. Biotechnol. 18: 429–433 (2002)

    Article  CAS  Google Scholar 

  26. Vishnu C, Seenaya G, Reddy G. Direct conversion of starch to L(+) lactic acid by amylase producing Lactobacillus amylophilus GV6. Bioprocess Eng. 23: 155–158 (2000)

    Article  CAS  Google Scholar 

  27. Petrova P, Petrov K. Direct starch conversion into L-(+)-lactic acid by a novel amylolytic strain of Lactobaicllus paracasei B41. Starch 64: 10–17 (2012)

    Article  CAS  Google Scholar 

  28. Petrov K, Urshev Z, Petrova P. L(+)-lactic acid production from starchy a novel amylolytic Lactobacoccus lactis subsp. lactis B84. Food Microbiol. 25: 550–557 (2008)

    Article  CAS  Google Scholar 

  29. Narita J, Nakahara S, Fukuda H, Kondo A. Efficient production of L(+)-lactic acid from raw starch by Streptococcus bovis 148. J. Biosci. Bioeng. 97: 423–425 (2004)

    Article  CAS  Google Scholar 

  30. Chaplin MF, Bucke C. Enzyme Technology. Press Syndicate of the University of Cambridge, New York, NY, USA. pp. 2–39 (1990)

    Google Scholar 

  31. Enache M, Popescu G, Dumitru L, Kamekura M. The effect of Na+/Mg2+ ratio on the amylase activity of haloarchaea isolated from Techirghiol Lake, Romania, a low salt environment. Proc. Rom. Acad. Series B Chem. Life. Sci. Geosci. 1: 3–7 (2009)

    Google Scholar 

  32. Santoyo MC, Loiseau G, Sanoja RR, Guyot JP. Study of starch fermentation at low pH by Lactobacillus fermentum Ogi E1 reveals uncoupling between growth and α-amylase production at pH 4.0. Int. J. Food Microbiol. 80: 77–87 (2003)

    Article  Google Scholar 

  33. Aguilar G, Morlon-Guyot J, Trejo-Aguilar B, Guyot JP. Purification and characterization of an extracellular α-amylase produced by Lactobacillus manihotivorans LMB 18010T, an amylolytic lactic acid bacterium. Enzyme Microb. Technol. 27: 406–413 (2000)

    Article  CAS  Google Scholar 

  34. Burgess-Cassler A, Imam S. Partial purification and comparative characterization of α-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol. 23: 207–213 (1991)

    Article  CAS  Google Scholar 

  35. Sajedi RH, Naderi-Manesh H, Khajeh K, Ahmadvand R, Ranjbar B, Asoodeh A, Moradian F. A Ca-independent α-amylase that is active and stable at low pH from Bacillus sp. KR-8104. Enzyme Microb. Technol. 36: 666–671 (2005)

    Article  CAS  Google Scholar 

  36. Sharma A, Satyanarayana T. Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochem. 48: 201–211 (2013)

    Article  CAS  Google Scholar 

  37. Andersson U, Radstrom P. β-Glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria. Environ. Microbiol. 4: 81–88 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chartchai Khanongnuch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanpiengjai, A., Rieantrakoonchai, W., Pratanaphon, R. et al. High efficacy bioconversion of starch to lactic acid using an amylolytic lactic acid bacterium isolated from Thai indigenous fermented rice noodles. Food Sci Biotechnol 23, 1541–1550 (2014). https://doi.org/10.1007/s10068-014-0210-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0210-5

Keywords

Navigation