Skip to main content
Log in

Determination of arsenic species in rice grains using HPLC-ICP-MS

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Determination of As species in rice is necessary because inorganic As species (arsenate (AsV) and arsenite (AsIII)) are more toxic than organic As (monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)). This study evaluated the As species in Korean and USA rice grains. Levels were determined using microwave extraction and high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry (HPLC-ICPMS). Arsenite and DMA were the major species detected in Korean and USA rice. The percentage of inorganic As was 76.94% (54.50–87.86%) for Korean rice and 69.28% (52.94–72.92%) for USA samples. The order and percentage of As species observed in Korean and USA rice were AsIII (70%)>DMA (24%)>AsV (5%)>MMA (1%), and AsIII (64%)>DMA (28%)>AsV(5%)>MMA (3%), respectively. The AsIII concentrations were not significantly different in Korean rice grains, compared to USA grains. The high AsIII predominance indicates an elevated toxic effect of As in rice grains and needs further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 41: 6854–6859 (2007)

    Article  CAS  Google Scholar 

  2. Maeda S. Safety and Environmental Effects. pp. 725–759. In: The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds. Patai S (ed). John Wiley & Sons, New York, NY, USA (1994)

    Chapter  Google Scholar 

  3. Ronkart SN, Laurent V, Carbonnelle P, Mabon N, Copin A, Barthelemy JP. Speciation of five arsenic species (arsenite, arsenate, MMAAV, DMAAV, and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere 66: 738–745 (2007)

    Article  CAS  Google Scholar 

  4. Heitkemper DT, Vela NP, Stewart KR, Westphal CS. Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 16: 299–306 (2001)

    Article  CAS  Google Scholar 

  5. Meharg AA. Arsenic in rice — understanding a new disaster for South-East Asia. Trends Plant Sci. 9: 415–417 (2004)

    Article  CAS  Google Scholar 

  6. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol. 39: 5531–5540 (2005)

    Article  CAS  Google Scholar 

  7. Sun GX, Williams PN, Zhu YG, Deacon C, Carey AM, Raab A, Feldmann J, Meharg AA. Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ. Int. 35: 473–475 (2009)

    Article  CAS  Google Scholar 

  8. Meharg AA, Deacon C, Campbell RCJ, Carey AM, Williams PN, Feldmann J, Raab A. Inorganic arsenic levels in rice milk exceed EU and US drinking water standards. J. Environ. Monit. 10: 428–431 (2008)

    Article  CAS  Google Scholar 

  9. Meharg AA, Sun GX, Williams PN, Adomako E, Deacon C, Zhu YG, Feldmann J, Raab A. Inorganic arsenic levels in baby rice are of concern. Environ. Pollut. 152: 746–749 (2008)

    Article  CAS  Google Scholar 

  10. Zavala YJ, Duxbury J. Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ. Sci. Technol. 42: 3856–3860 (2008)

    Article  CAS  Google Scholar 

  11. Duxbury JM, Mayer AB, Lauren JG, Hassan N. Food chain aspects of arsenic contamination in Bangladesh: Effects on quality and productivity of rice. J. Environ. Sci. Health A 38: 61–69 (2003)

    Article  CAS  Google Scholar 

  12. Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ. Sci. Technol. 42: 5008–5013 (2008)

    Article  CAS  Google Scholar 

  13. Roychowdhury T, Uchino T, Tokunaga H, Ando M. Survey of arsenic in food composites from an arsenic affected area of West Bengal, India. Food Chem. Toxicol. 40: 1611–1621 (2002)

    Article  CAS  Google Scholar 

  14. Heikens A, Panaullah GM, Meharg AA. Review of arsenic behaviour from groundwater and soil to crops and potential impacts on agriculture and food safety. Rev. Environ. Contam. Toxicol. 189: 43–87 (2007)

    CAS  Google Scholar 

  15. Yamauchi H, Fowler BA. Toxicity and metabolism of inorganic and methylated arsenicals. pp. 35–53. In: Arsenic in the Environment. Part II. Human Health and Ecosystem Effects. Nriagu JO (ed). John Wiley & Sons, New York, NY, USA (1984)

    Google Scholar 

  16. National Research Council. Arsenic in Drinking Water. National Academy Press, Washington, DC, USA. P. 273 (1999)

    Google Scholar 

  17. Narukawa T, Inagaki K, Kuroiwa T, Chiba K. The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 77: 427–432 (2008)

    Article  CAS  Google Scholar 

  18. Foster S, Maher W, Krikowa F, Apte S. A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 71: 537–549 (2007)

    Article  CAS  Google Scholar 

  19. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV. Monomethylarsonous acid (MMA(III)) is more toxic than arsenic in Chang human hepatocyte. Toxicol. Appl. Pharmacol. 163: 203–207 (2000)

    Article  CAS  Google Scholar 

  20. Vahter M. Methylation of inorganic As in different mammalian species and population groups. Sci. Prog. 82: 69–88 (1999)

    CAS  Google Scholar 

  21. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Meacher DM, Menzel DBA. Market basket survey of inorganic arsenic in food. Food Chem. Toxicol. 37: 839–836 (1999)

    Article  CAS  Google Scholar 

  22. Liang F, Li Y, Zhang G, Tan M, Lin J, Liu W, Li Y, Lu W. Total and speciated arsenic levels in rice from China. Food Addit. Contam. A 27: 810–816 (2010)

    Article  CAS  Google Scholar 

  23. Zavala YJ, Gerads R, Gürleyük H, Duxbury JM. Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health

  24. FDA. U.S. Food and Drug Administration. Arsenic levels in rice and rice products. Available from: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm319972.htm. Accessed 2012.

  25. Adomako EE, Williams PN, Deacon C, Meharg AA. Inorganic arsenic and trace elements in Ghanaian grain staples. Environ. Pollut. 159: 2435–2442 (2011)

    Article  CAS  Google Scholar 

  26. Carbonell-Barrachina ÁA, Wu X, Ramírez-Gandolfo A, Norton GJ, Burló F, Deacon C, Meharg AA. Inorganic arsenic contents in ricebased infant foods from Spain, UK, China, and USA. Environ. Pollut. 163: 77–83 (2012)

    Article  CAS  Google Scholar 

  27. Brockman JD, Brown JWN IV. Measurement of arsenic species in infant rice cereals by liquid chromatography inductively coupled plasma mass spectrometry. Am. J. Anal. Chem. 3: 693–697 (2012)

    Article  Google Scholar 

  28. Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu YG, Islam R. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 42: 1051–1057 (2008)

    Article  CAS  Google Scholar 

  29. Smith NM, Lee R, Heitkemper DT, Cafferky KD, Haque A, Henderson AK. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci. Total Environ. 370: 294–301 (2006)

    Article  CAS  Google Scholar 

  30. Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol. 40: 4903–4908 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Kim, WI., Kunhikrishnan, A. et al. Determination of arsenic species in rice grains using HPLC-ICP-MS. Food Sci Biotechnol 22, 1509–1513 (2013). https://doi.org/10.1007/s10068-013-0245-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0245-z

Keywords

Navigation