Skip to main content
Log in

Optimized astaxanthin production in Chlorella zofingiensis under dark condition by response surface methodology

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the major factors affecting both cell growth and astaxanthin production of Chlorella zofingiensis under dark were identified and optimized through statistical methods. A Plackett-Burman design was initially used to evaluate seven culture factors, of which glucose, NaNO3, and MgSO4·7H2O were found to be the most important in affecting C. zofingiensis. The central composite design and response surface methodology (RSM) were further used to optimize these factors. The optimized glucose, NaNO3, and MgSO4·7H2O concentrations for cell growth were 46.7, 1.13, and 0.125 g/L MgSO4·7H2O respectively, and for astaxanthin production were 35.2, 0.281, and 0.023 g/L, respectively. After the optimization, a two-stage culture strategy was employed to further maximize astaxanthin production, and the results showed that the astaxanthin yield of C. zofingiensis could reach 15.1 mg/L, which was 74% higher than that achieved in batch culture using the basal medium (i.e., 8.7 mg/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160–167 (2000)

    Article  CAS  Google Scholar 

  2. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. 46: 185–196 (2006)

    Article  CAS  Google Scholar 

  3. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21: 210–216 (2003)

    Article  CAS  Google Scholar 

  4. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod. 69: 443–449 (2006)

    Article  CAS  Google Scholar 

  5. Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077–1082 (1991)

    CAS  Google Scholar 

  6. Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant. 108: 111–117 (2000)

    Article  CAS  Google Scholar 

  7. Sarada R, Tripathi U, Ravishankar GA. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 37: 623–627 (2002)

    Article  CAS  Google Scholar 

  8. Harker M, Tsavalos AJ, Young AJ. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter airlift photobioreactor. J. Ferment. Bioeng. 82: 113–118 (1996a)

    Article  CAS  Google Scholar 

  9. Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70: 313–321 (1999)

    Article  CAS  Google Scholar 

  10. Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421–426 (1996)

    Article  CAS  Google Scholar 

  11. Shi XM, Zhang XW, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Tech. 27: 312–318 (2000)

    Article  CAS  Google Scholar 

  12. Hata N, Ogbonnal JC, Hasegawa Y, Taroda H, Tanaka H. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J. Appl. Phycol. 13: 395–402 (2001)

    Article  CAS  Google Scholar 

  13. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biot. 64: 848–854 (2004)

    Article  Google Scholar 

  14. Ip PF, Wong KH, Chen F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 39: 1761–1766 (2004)

    Article  CAS  Google Scholar 

  15. Ip PF, Chen F. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40: 733–738 (2005)

    Article  CAS  Google Scholar 

  16. Cui FJ, Li Y, Xu ZH, Xu HY, Sun K, Tao WY. Optimization of the medium composition for production of mycelial biomass and exopolymer by Grifola frondosa GF9801 using response surface methodology. Bioresour. Technol. 97: 1209–1216 (2006)

    Article  CAS  Google Scholar 

  17. Gong XD, Chen F. Influence of medium components on astaxanthin content and production of Haematococcus pluvialis. Process Biochem. 33: 385–391 (1998)

    Article  CAS  Google Scholar 

  18. Ramírez J, Gutierrez H, Gschaedler A. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol. 88: 259–268 (2001)

    Article  Google Scholar 

  19. Kim JH, Kang SW, Kim SW, Chang HI. High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 using statistical experimental designs. Biosci. Biotech. Bioch. 9: 1743–1748 (2005)

    Article  Google Scholar 

  20. Liu YS, Wu JY. Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochem. Eng. J. 36: 182–189 (2007)

    Article  Google Scholar 

  21. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–429 (1959)

    Article  CAS  Google Scholar 

  22. Baroli I, Do AD, Yamane T, Niyogi KK. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell. 15: 992–1008 (2003)

    Article  CAS  Google Scholar 

  23. Darley WM. Phytoplankton: Environmental factors affecting growth. pp. 21–52. In: Algal Biology: A Physiological Approach. Wilkinson JF (ed). Blackwell Scientific Publications, London, UK (1982)

    Google Scholar 

  24. Harker M, Tsavalos AJ, Young AJ. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55: 207–214 (1996b)

    Article  CAS  Google Scholar 

  25. Evans HJ, Sorger GJ. Role of mineral elements with emphasis on the univalent cations. Annu. Rev. Plant Physiol. 17: 47–76 (1966)

    Article  CAS  Google Scholar 

  26. Lu YK, Chen YR, Yang CM. Influence of Fe-deficiency and Mgdeficiency on the thylakoid membranes of a chlorophyll-deficient Ch5 mutant of Arabidopsis-Thaliana. Bot. Bull. Acad. Sinica. 36: 175–179 (1995)

    CAS  Google Scholar 

  27. Fa’bregas J, Domý’nguez A, Alvarez DG, Lamela T, Otero A. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623–626 (1998)

    Article  Google Scholar 

  28. Zhang DH, Lee YK. Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp strain MA-1. Appl. Microbiol. Biot. 55: 537–540 (2001)

    Article  CAS  Google Scholar 

  29. Fábregas J, Otero A, Maseda A, Domínguez A. Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89: 65–71 (2001)

    Article  Google Scholar 

  30. Aflalo C, Meshulam Y, Zarka A, Boussiba S. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98: 300–305 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Wang, Y. Optimized astaxanthin production in Chlorella zofingiensis under dark condition by response surface methodology. Food Sci Biotechnol 22, 1–8 (2013). https://doi.org/10.1007/s10068-013-0221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0221-7

Keywords

Navigation