Skip to main content
Log in

Gelatinolytic enzymes from Bacillus amyloliquefaciens isolated from fish docks: Characteristics and hydrolytic activity

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Fifty-five bacteria with gelatinolytic activity were screened from over 500 isolates obtained from fishing docks in Songkhla, Thailand. Based on 16S rRNA gene sequence analysis, 3 selected strains (K12, O02, and S13) were identified as Bacillus cereus with 99.8% similarity. Three other stains (D10, G02, and H11) were identified as Bacillus amyloliquefaciens with 99.7% similarity. Gelatinolytic enzymes of the D10, G02, and H11 strains were precipitated using ammonium sulfate precipitation, followed by dialysis with an increase in purity between 19-34-fold. Maximal gelatinolytic activities towards fish gelatin were attained at 50°C and pH 7.5. Metallo- and serine-gelatinolytic enzymes were dominant for all 3 strains. All gelatinolytic enzymes showed similar hydrolysis towards fish gelatin to commercial Alcalase, but higher hydrolysis was found in the formers within the first 60 min. Therefore, gelatinolytic enzymes from selected B. amyloliquefaciens strains can be used for production of fish gelatin hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. R. 62: 597–635 (1998)

    CAS  Google Scholar 

  2. Priest FG. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711–753 (1977)

    CAS  Google Scholar 

  3. Chauhan B, Gupta R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 39: 2115–2122 (2004)

    Article  CAS  Google Scholar 

  4. Asdornnithee S, Himeji E, Akiyama K, Sasaki T, Takata R. Isolation and characterization of Pz-peptidase from Bacillus licheniformis N22. J. Ferment. Bioeng. 79: 200–204 (1995)

    Article  CAS  Google Scholar 

  5. Wu Q, Li C, Li C, Chen H, Shuliang L. Purification and characterization of a novel collagenase from Bacillus pumilus Col-J. Appl. Biochem. Biotech. 160: 129–139 (2010)

    Article  CAS  Google Scholar 

  6. Nagano H, To KA. Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci. Biotech. Bioch. 63: 181–183 (1999)

    Article  Google Scholar 

  7. Suphatharaprateep W, Cheirsilp B, Jongjareonrak A. Production and properties of two collagenases from bacteria and their application for collagen extraction. New Biotechnol. 28: 649–655 (2011)

    Article  CAS  Google Scholar 

  8. Nakayama T, Tsuruoka N, Akai M, Nishino T. Thermostable collagenolytic activity of a novel thermophilic isolate, Bacillus sp. strain NTAP-1. J. Biosci. Bioeng. 89: 612–614 (2000)

    Article  CAS  Google Scholar 

  9. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative source: A review. Food Hydrocolloid. 25: 1813–1827 (2011)

    Article  Google Scholar 

  10. Liu L, Ma M, Cai Z, Yang X, Wang W. Purification and Properties of a collagenolytic protease produced by Bacillus cereus MBL13 strain. Food Technol. Biotech. 48: 151–160 (2010)

    Google Scholar 

  11. McLaughlin B, Weiss JB. Endothelial-cell-stimulating angiogenesis factor (ESAF) activates progelatinase A (72 kDa type IV collagenase), prostromelysin 1 and procollagenase and reactivates their complexes with tissue inhibitors of metalloproteinases. Biochem. J. 317: 739–745 (1996)

    CAS  Google Scholar 

  12. Benjakul S, Morrissey MT. Protein hydrolysates from Pacific whiting solid waste. J. Agr. Food Chem. 45: 3423–3430 (1997)

    Article  CAS  Google Scholar 

  13. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46: 939–946 (1996)

    Article  CAS  Google Scholar 

  14. Takagi H, Shida O, Kadowaki K, Komagata K, Udaka S. Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int. J. Syst. Bacteriol. 43: 221–231 (1993)

    Article  CAS  Google Scholar 

  15. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Biochemistry 75: 4801–4805 (1978)

    CAS  Google Scholar 

  16. Thompson JD, Gibson TJ, Plewniak K, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882 (1997)

    Article  CAS  Google Scholar 

  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120 (1980)

    Article  CAS  Google Scholar 

  18. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425 (1987)

    CAS  Google Scholar 

  19. Tamura K, Dudley J, Nei M, Kumar S. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software Version 4.0. Mol. Biol. Evol. 24: 1596–1599 (2007)

    Article  CAS  Google Scholar 

  20. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791 (1985)

    Article  Google Scholar 

  21. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Purification and characterisation of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem. 100: 1580–1589 (2007)

    Article  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr LA, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  23. Steel RGD, Torrie JH. Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New York, NY, USA. pp. 195–197 (1980)

    Google Scholar 

  24. Petrova D, Derekova A, Vlahov S. Purification and properties of individual collagenases from Streptomyces sp. strain 3B. Folia. Microbiol. 51: 93–98 (2006)

    Article  CAS  Google Scholar 

  25. Wu Q, Li C, Li C, Chen H, Shuliang L. Purification and characterization of a novel collagenase from Bacillus pumilus Col-J. Appl. Biochem. Biotech. 160: 129–139 (2010)

    Article  CAS  Google Scholar 

  26. Okamoto M, Yonejima Y, Tsujimoto Y, Suzuki Y, Watanabe K. A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl. Microbiol. Biot. 57: 103–108 (2001)

    Article  CAS  Google Scholar 

  27. Harrington DJ. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect. Immun. 64: 1885–1891 (1996)

    CAS  Google Scholar 

  28. Asdornnithee S, Himeji E, Akiyama K, Sasaki T, Takata R. Isolation and characterization of Pz-peptidase from Bacillus licheniformis N22. J. Ferment. Bioeng. 79: 200–204 (1995)

    Article  CAS  Google Scholar 

  29. Godfrey T, Reichelt J. Industrial Enzymology: The Application of Enzymes in Industry. 2nd ed. Nature Press, New York, NY, USA. pp. 103–113 (1983)

    Google Scholar 

  30. Gonzales T, Robert-Baudouy J. Bacterial aminopeptidases: Properties and functions. FEMS Microbiol. 18: 319–344 (1996)

    Article  CAS  Google Scholar 

  31. Cho S-J, Oh S-H, Pridmore RD, Juillerat MA, Lee C-H. purification and characterization pf proteases from Bacillus amyloliquefaciens isolated from traditional soybean fermentation starter. J. Agr. Food Chem. 51: 7664–7670 (2003)

    Article  CAS  Google Scholar 

  32. Peng Y, Huang Q, Zhang RH, Zhang YZ. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Phys. B 134: 45–52 (2003)

    Article  Google Scholar 

  33. Khantaphant S, Benjakul S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp. Biochem. Phys. B 151: 410–419 (2008)

    Article  Google Scholar 

  34. Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysate by trinitrobenzenesulfonic acid. J. Agr. Food. Chem. 27: 1256–1262 (1979)

    Article  CAS  Google Scholar 

  35. Guérard F, Guimas L, Binet A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B -Enzym. 19–20: 489–498 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soottawat Benjakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sai-Ut, S., Benjakul, S. & Sumpavapol, P. Gelatinolytic enzymes from Bacillus amyloliquefaciens isolated from fish docks: Characteristics and hydrolytic activity. Food Sci Biotechnol 22, 1015–1021 (2013). https://doi.org/10.1007/s10068-013-0178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0178-6

Keywords

Navigation