Skip to main content
Log in

Differentiation of Streptococcus thermophilus strains in commercial Direct Vat Set yoghurt starter

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Based on inhibition of acid production, 100 individual colonies of Streptococcus thermophilus isolated from commercial Direct Vat Set yoghurt starter DVS-M were typed into 2 groups of sensitive and insensitive to phage φ001, which was isolated from the lysis culture of the turbidity test. The ratio between the sensitive and insensitive isolates in DVS-M was calculated at 3:2. Whole-cell protein profile (WCPP) and randomly amplified polymorphic DNA (RAPD) analysis showed that both WCPP and RAPD patterns between sensitive and insensitive isolates were distinct, whereas isolates with the same sensitivity or insensitivity shared common WCPP and RAPD patterns. It suggested that all the sensitive isolates belong to one S. thermophilus strain and all the insensitive isolates belong to another one. This study revealed that DVS-M yoghurt starter consists of 2 S. thermophilus strains with different phage sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X, Kong J, Qu Y. Isolation and characterization of a Lactobacillus fermentum temperate bacteriophage from Chinese yogurt. J. Appl. Microbiol. 101: 857–863 (2006)

    Article  CAS  Google Scholar 

  2. Zhang HP. Present situation and development countermeasures for probiotic lactic bacteria and fermented milk in China. Dairy Sci. Technol. 2: 51–54 (2009)

    Google Scholar 

  3. Skriver A, Stenby E, Folkenberg D, Runge M, Bang Jensen N. Tools in the development of future starter cultures for fermented milk. pp. 55–61. In: Proceedings of the IDF Seminar on Aroma and Texture of Fermented Milk. Kolding, Denmark. International Dairy Federation, Brussels, Belgium (2003)

    Google Scholar 

  4. Liu H, Zhang XL. The isolation and identification of direct-to-vat yoghurt culture bacteria and study of composite fermentation quality. Food Sci. 23: 66–68 (2002)

    Google Scholar 

  5. Cong YT, Gao XJ, Liu YF, Qin J. Isolation and identification of lactic acid bacteria from EZAL-MY96. Biotechnology 14: 38–40 (2004)

    Google Scholar 

  6. Urshev ZL, Pashova-Baltova KN, Dimitrov ZP. Tracing Streptococcus thermophilus strains in three-component yoghurt starters. World J. Microbiol. Biot. 22: 1223–1228 (2006)

    Article  CAS  Google Scholar 

  7. Baggesen DL, Wegener HC. Phage types of Salmonella enterica ssp. enterica serovar typhimurium isolated from production animals and humans in Denmark. Acta Vet. Scand. 35: 349–354 (1994)

    CAS  Google Scholar 

  8. Bannerman E, Boerlin P, Bille J. Typing of Listeria monocytogenes by monocin and phage receptors. Int. J. Food Microbiol. 31: 245–262 (1996)

    Article  CAS  Google Scholar 

  9. Guglielmotti DM, Binetti AG, Reinheimer JA, Quiberoni A. Streptococcus thermophilus phage monitoring in a cheese factory: Phage characteristics and starter sensitivity. Int. Dairy J. 19: 476–480 (2009)

    Article  CAS  Google Scholar 

  10. Lick S, Keller M, Bockelmann W, Jochem Heller K. Rapid identification of Streptococcus thermophilus by primer-specific PCR amplification based on its lacZ gene. Syst. Appl. Microbiol. 19: 74–77 (1996)

    Article  CAS  Google Scholar 

  11. Svensson U, Christiansson A. Methods for phage monitoring. Bull. Int. Dairy Fed. 263: 29–39 (1991)

    Google Scholar 

  12. Quiberoni A, Tremblay D, Ackermann HW, Moineau S, Reinheimer JA. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina. J. Dairy Sci. 89: 3791–3799 (2006)

    Article  CAS  Google Scholar 

  13. Sanders ME, Klaenhammer TR. Characterization of phage-sensitive mutants from a phage-insensitive strain of Streptococcus lactis: Evidence for a plasmid determinant that prevents phage adsorption. Appl. Environ. Microb. 46: 1125–1133 (1983)

    CAS  Google Scholar 

  14. Guimont C, Clary D, Bracquart P. Analysis of whole-cell proteins of Streptococcus thermophilus by 2 electrophoretic methods. Lait 74: 13–21 (1994)

    Article  CAS  Google Scholar 

  15. Sarmiento-Rubiano LA, Berger B, Moine D, Zúñiga M, Pérez-Martínez G, Yebra MJ. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods. BMC Genomics 11: 504 (2010)

    Article  Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  17. Massa R, Bantar C, Lopardo H, Vay C, Gutkind G. Whole-cell protein profiles are useful for distinguishing enterococcal species recovered from clinical specimens. Rev. Argent. Microbiol. 39: 199–203 (2007)

    CAS  Google Scholar 

  18. Binetti AG, Suárez VB, Tailliez P, Reinheimer A. Characterization of spontaneous phage-resistant variants of Streptococcus thermophilus by randomly amplified polymorphic DNA analysis and identification of phage-resistance mechanisms. Int. Dairy J. 17: 1115–1122 (2007)

    Article  CAS  Google Scholar 

  19. Samarzija D, Sikora S, Redzepoviæ S, Antunac N, Havranek J. Application of RAPD analysis for identification of Lactococcus lactis subsp. cremoris strains isolated from artisanal cultures. Microbiol. Res. 157: 13–17 (2002)

    Article  CAS  Google Scholar 

  20. Sturino JM, Klaenhammer TR. Engineered bacteriophage defense systems in bioprocessing. Nat. Rev. Microbiol. 4: 395–404 (2006)

    Article  CAS  Google Scholar 

  21. Barrangou R, Fremaux C, Boyaval P, Richards M, Deveau H, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712 (2007)

    Article  CAS  Google Scholar 

  22. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190: 1390–1400 (2008)

    Article  CAS  Google Scholar 

  23. Ashmaig A, Hasan A, Gaali EE. Identification of lactic acid bacteria isolated from traditional Sudanese fermented camel’s milk (Gariss). Afr. J. Microbiol. Res. 3: 451–457 (2009)

    CAS  Google Scholar 

  24. Ghazi F, Henni DE, Benmechernene Z, Kihal M. Phenotypic and whole cell protein analysis by SDS-PAGE for identification of dominants lactic acid bacteria isolated from Algerian raw milk. World J. Dairy Food Sci. 4: 78–87 (2009)

    Google Scholar 

  25. Lazzi C, Bove CG, Sgarbi E, Gatti M, La Gioia F, Torriani S, Neviani E. Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus. J. Microbiol. Meth. 79: 48–54 (2009)

    Article  CAS  Google Scholar 

  26. Sánchez I, Seseña S, Palop L. Identification of lactic acid bacteria from spontaneous fermentation of ‘Almagro’ eggplants by SDSPAGE whole cell protein fingerprinting. Int. J. Food Microbiol. 82: 181–189 (2003)

    Article  Google Scholar 

  27. Moineau S, Tremblay D, Labrie S. Phages of lactic acid bacteria: From genomics to industrial applications. ASM News 68: 388–393 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Wu, Z., Chen, Z. et al. Differentiation of Streptococcus thermophilus strains in commercial Direct Vat Set yoghurt starter. Food Sci Biotechnol 22, 987–991 (2013). https://doi.org/10.1007/s10068-013-0174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0174-x

Keywords

Navigation