Skip to main content
Log in

Effect of Cheonggukjang made with germinated soybean on lipid contents and fecal excretion of neutral steroids in rats fed a high cholesterol diet

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effect of cheonggukjang made with soybean germinated under dark and light conditions on lipid content and fecal neutral steroids in rats fed with a high cholesterol diet. Rats were divided into 4 groups: high cholesterol diet (HC); high cholesterol diet containing normal cheonggukjang (HNC); high cholesterol diet containing cheonggukjang made with soybean germinated under dark condition (HDC); high cholesterol diet containing cheonggukjang made with soybean germinated under light condition (HLC). Dietary supplementation with light-reacted cheonggukjang decreased hepatic triglycerides, compared with the other groups. Fecal excretion of total lipids and triglycerides increased when fed with cheonggukjang made with soybean germinated under light condition. Fecal excretion of coprostanol, cholesterol, and coprostanone tended to increase in the cheonggukjang-supplemented groups. These results suggest that dietary supplementation with cheonggukjang made with germinated soybean might prevent hyperlipidemia by improving the lipid metabolism through decreasing the liver triglycerides contents and increasing fecal excretion of triglycerides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee EJ, Kim JK. Characteristics of taste components of cheonggukjang fermented with Bacillus subtilis. Food Sci. Biotechnol. 13: 572–575 (2004)

    CAS  Google Scholar 

  2. Ryu BM, Ryu SH, Kim MJ, Lee YS, Moon GS. Antioxidative and lipofuscin-formation inhibitory effects of soybean and cheonggukjang. J. Food Sci. Nutr. 14: 29–36 (2009)

    Article  CAS  Google Scholar 

  3. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76: 1191–1201 (2002)

    CAS  Google Scholar 

  4. Kim WJ, Lee HY, Won MH, Yoo SH. Germination effect of soybean on its contents of isoflavones and oligosaccharides. Food Sci. Biotechnol. 14: 498–502 (2005)

    CAS  Google Scholar 

  5. Ahmad S, Pathak DK. Nutritional changes in soybean during germination. J. Food Sci. Technol. 37: 665–666 (2000)

    Google Scholar 

  6. McCue PP, Shetty K. A role for amylase and peroxidase-linked polymerization in phenolic antioxidant mobilization in darkgerminated soybean and implications for health. Process Biochem. 39: 1785–1791 (2004)

    Article  CAS  Google Scholar 

  7. Allred CD, Allred KF, Ju YH, Goeppinger TS, Doerge DR, Helferich WG. Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 25: 1649–1657 (2004)

    Article  CAS  Google Scholar 

  8. Kirakosyan A, Kaufman P, Nelson RL, Kasperbauer MJ, Duke JA, Seymour E, Chang SC, Warber S, Bolling S. Isoflavone levels in five soybean (Glycine max) genotypes are altered by phytochromemediated light treatments. J. Agr. Food Chem. 54: 54–58 (2006)

    Article  CAS  Google Scholar 

  9. Chi HY, Roh JS, Kim JT, Lee SJ, Kim MJ, Hahn SJ, Chung IM. Light quality on nutritional composition and isoflavones content in soybean sprouts. Korean J. Crop Sci. 50: 415–418 (2005)

    Google Scholar 

  10. Phommalth S, Jeong YS, Kim YH, Dhakal KH, Hwang YH. Effects of light treatment on isoflavone content of germinated soybean seeds. J. Agr. Food Chem. 56: 10123–10128 (2008)

    Article  Google Scholar 

  11. Lee JJ, Lee DS, Kim HB. Fermentation pattern of cheonggukjang and ganjang by Bacillus licheniformis B1. Korean J. Microbiol. 35: 296–301 (1999)

    Google Scholar 

  12. McGowan MW, Artiss JD, Strandbergh DR, Zak B. A peroxidasecoupled method for the colorimetric determination of serum triglycerides. Clin. Chem. 29: 538–542 (1983)

    CAS  Google Scholar 

  13. Folch J, Lees M, Sloane Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497–509 (1957)

    CAS  Google Scholar 

  14. Zlatkis A, Zak B. Study of a new cholesterol reagent. Anal. Biochem. 29: 143–148 (1969)

    Article  CAS  Google Scholar 

  15. Mendez J, Franklin B, Gahagan F. Simple manual procedure for determination of serum triglycerides. Clin. Chem. 21: 768–770 (1975)

    CAS  Google Scholar 

  16. Eng LF, Noble EP. The maturation of rat brain myelin. Lipids 3: 157–162 (1968)

    Article  CAS  Google Scholar 

  17. Crowell MJ, Macdonald IA. Enzymic determination of 3α-, 7α-, and 12α-hydroxyl groups of fecal bile salts. Clin. Chem. 26: 1298–1300 (1980)

    CAS  Google Scholar 

  18. Iwai K, Nakaya N, Kawasaki Y, Matsue H. Antioxidative functions of natto, a kind of fermented soybeans: Effects on LDL oxidation and lipid metabolism in cholesterol-fed rats. J. Agr. Food Chem. 50: 3597–3601 (2002)

    Article  CAS  Google Scholar 

  19. Haines CJ, James AE, Panesar NS, Ngai TJ, Sahota DS, Jones RL, Chang AM. The effect of percutaneous oestradiol on atheroma formation in ovariectomized cholesterol-fed rabbits. Atherosclerosis 143: 369–375 (1999)

    Article  CAS  Google Scholar 

  20. Chen JR, Liu SM, Yang SC, Suetsuna K. Soymilk intake is associated with plasma and liver lipid profiles in rats fed a high-cholesterol diet. Nutrition 20: 929–933 (2004)

    Article  CAS  Google Scholar 

  21. Kim MH, Lee NH, Choi UK. Fermentation characteristics of cheonggukjang made of germinated soybean under light condition. Korean J. Life Sci. 18: 1420–1425 (2008)

    Article  Google Scholar 

  22. Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 1: 149–155 (2010)

    Article  CAS  Google Scholar 

  23. Koh JB. Effects of cheonggukjang on lipid metabolism in hyperlipidemic female rats. Korean J. Nutr. 39: 331–337 (2006)

    CAS  Google Scholar 

  24. Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J. Nutr. Biochem. 17: 365–373 (2006)

    Article  CAS  Google Scholar 

  25. Iritani N, Nagashima K, Fukuda H, Katsurada A, Tanaka T. Effects of dietary proteins on lipogenic enzymes in rat liver. J. Nutr. 116: 190–197 (1986)

    CAS  Google Scholar 

  26. Gudbrandsen OA, Wergedahl H, Mørk S, Liaset B, Espe M, Berge RK. Dietary soya protein concentration enriched with isoflavones reduced fatty liver, increased hepatic fatty acid oxidation, and decreased the hepatic mRNA level of VLDL receptor in obese Zucker rats. Brit. J. Nutr. 96: 249–257 (2006)

    Article  CAS  Google Scholar 

  27. Yang JL, Lee SH, Song YS. Improving effect of powders of cooked soybean and cheonggukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. J. Korean Soc. Food Sci. Nutr. 32: 899–905 (2003)

    Article  CAS  Google Scholar 

  28. Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 81: 397–408 (2005)

    CAS  Google Scholar 

  29. Jeong PH, Shin DH, Kim YS. Effects of germination and osmopriming treatment on enhancement of isoflavone contents in various soybean cultivars and cheonggukjang (fermented unsalted soybean paste). J. Food Sci. 73: H187–H194 (2008)

    Article  CAS  Google Scholar 

  30. Kawakami Y, Tsurugasaki W, Nakamura S, Osada K. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 16: 205–212 (2005)

    Article  CAS  Google Scholar 

  31. Raimondi S, Roncaglia L, De Lucia M, Amaretti A, Leonardi A, Pagnoni UM, Rossi M. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl. Microbiol. Biot. 81: 943–950 (2009)

    Article  CAS  Google Scholar 

  32. Sepehr E, Cooke GM, Robertson P, Gilani GS. Effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged male rats. Mol. Nutr. Food Res. 53: S16–S26 (2009)

    Article  Google Scholar 

  33. Velasquez MT, Bhathena SJ. Dietary phytoestrogens: A possible role in renal disease protection. Am. J. Kidney Dis. 37: 1056–1068 (2001)

    Article  CAS  Google Scholar 

  34. Nagaoka S, Awano T, Nagata N, Masaoka M, Hori G, Hashimoto K. Serum cholesterol reduction and cholesterol absorption inhibition in CaCo-2 cells by a soyprotein peptic hydrolyzate. Biosci. Biotech. Bioch. 61: 354–356 (1997)

    Article  CAS  Google Scholar 

  35. Kesniemi YA, Tarpila S, Miettinen TA. Low vs. high dietary fiber and serum, biliary, and fecal lipids in middle-aged men. Am. J. Clin. Nutr. 51: 1007–1012 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Sook Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, ES., Choi, SK., Zhang, XH. et al. Effect of Cheonggukjang made with germinated soybean on lipid contents and fecal excretion of neutral steroids in rats fed a high cholesterol diet. Food Sci Biotechnol 22, 15–21 (2013). https://doi.org/10.1007/s10068-013-0003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0003-2

Keywords

Navigation