Skip to main content
Log in

Drying of pomegranate seeds using infrared radiation

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Effect of different infrared (IR) power levels on drying kinetics of pomegranate seeds was investigated. The pomegranate seeds were dried at 83, 104, 125, and 146 W IR power levels. It was observed that the power levels affected the drying rate and time. Drying time reduced from 150 to 60 min as the IR power level increased from 83 to 146 W. The experimental data obtained from drying study were fitted with 10 mathematical models to evaluate the drying kinetics of the pomegranate seeds. The Page, Midilli et al., and Weibull models are given better prediction than the other models and satisfactorily described drying kinetics of pomegranate seeds. Effective diffusivity varied from 1.96 to 6.29×10−11 m2/s and was significantly influenced by IR power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tehranifar A, Zarei M, Nemati Z, Esfandiyari B, Vazifeshenas MR. Investigation of physico-chemical properties and antioxidant activity of 20 Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. -England 126: 180–185 (2010)

    CAS  Google Scholar 

  2. Tezcan F, Gultekin-Ozguven M, Diken T, Ozcelik B, Erim FD. Antioxidant activity and total phenolic, organic acid, and sugar content in commercial pomegranate juices. Food Chem. 115: 873–877 (2009).

    Article  CAS  Google Scholar 

  3. Ucar S, Karagöz S. The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. J. Anal. Appl. Pyrol. 84: 151–156 (2009)

    Article  CAS  Google Scholar 

  4. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Sendra E, Sayas-Barberá E, Pérez-Alvarez JA. Antioxidant properties of pomegranate (Punica granatum L.) bagasses obtained as co-product in the juice extraction. Food Res. Int. 44: 1217–1223 (2011)

    Article  CAS  Google Scholar 

  5. Vega-Gálvez A, Miranda M, Díaz LP, Lopez L, Rodriguez K, Di Scala K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresource Technol. 101: 7265–7270 (2010)

    Article  Google Scholar 

  6. Brooks MS, Abou El-Hana NH, Ghaly AE. Effects of tomato geometries and air temperature on the drying behaviour of plum tomato. Am. J. Appl. Sci. 5: 1369–1375 (2008)

    Article  Google Scholar 

  7. Demir K, Sacilik K. Solar drying of ‘Ayaş’ tomato using a natural convection solar tunnel dryer. J. Food Agric. Environ. 8: 7–12 (2010)

    Google Scholar 

  8. Kocabiyik H, Tezer D. Drying of carrot slices using infrared radiation. Int. J. Food Sci. Tech. 44: 953–959 (2009)

    Article  CAS  Google Scholar 

  9. Hebbar UH, Ramesh MN. Optimisation of processing conditions for infrared drying of cashew kernels with taste. J. Sci. Food Agr. 85: 865–871 (2005)

    Article  CAS  Google Scholar 

  10. Nowak D, Lewicki PP. Infrared drying of apple slices. Innov. Food Sci. Emerg. 5: 353–360 (2004)

    Article  Google Scholar 

  11. Sharma GP, Verma RC, Pathare PB. Thin-layer infrared radiation drying of onion slices. J. Food Eng. 67: 361–366 (2005)

    Article  Google Scholar 

  12. Shi J, Pan Z, McHugh TH, Wood D, Hirschberg E, Olson D. Drying and quality characteristics of fresh and sugar-infused blueberries dries with infrared radiation heating. LWT-Food Sci. Technol. 41: 1962–1972 (2008)

    Article  CAS  Google Scholar 

  13. Caglar A, Togrul IT, Togrul H. Moisture and thermal diffusivity of seedless grape under infrared drying. Food Bioprod. Process. 87: 292–300 (2009)

    Article  Google Scholar 

  14. Nasiroglu S, Kocabiyik H. Thin-layer infrared radiation drying of red pepper slices. J. Food Process Eng. 32: 1–16 (2009)

    Article  Google Scholar 

  15. Ruiz Celma A, López-Rodríguez F, Cuadros Blázquez F. Experimental modelling of infrared drying of industrial grape byproducts. Food Bioprod. Process. 87: 247–253 (2009)

    Article  Google Scholar 

  16. Ruiz Celma A, Cuadros Blázquez F, López-Rodríguez F. Experimental characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 87: 282–291 (2009)

    Article  Google Scholar 

  17. AOAC. Official Methods of Analysis of AOAC Intl. 15th ed. Method 934.06. Association of Official Analytical Chemists, Arlington, VA, USA (1990)

    Google Scholar 

  18. Roberts JS, Kidd DR, Padilla-Zakour O. Drying kinetics of grape seeds. J. Food Eng. 89: 460–465 (2008)

    Article  Google Scholar 

  19. Erbay Z, Icier F. Thin-layer drying behaviours of olive leaves (Olea Europaea L.). J. Food Process Eng. 33: 287–308 (2010)

    Article  Google Scholar 

  20. Wang Z, Sun J, Liao X, Chen F, Zhao G, Wu J, Hu X. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40: 39–46 (2007)

    Article  CAS  Google Scholar 

  21. Zielinska M, Markowski M. Air drying characteristics and moisture diffusivity of carrots. Chem. Eng. Process. 49: 212–218 (2010)

    Article  CAS  Google Scholar 

  22. Sharaf-Eldeen O, Blaisdell YI, Spagna G. A model for ear corn drying. Trans. ASAE 23: 1261–1271 (1980)

    Google Scholar 

  23. Al-Muhtasab AH, Harahsheh M, Hararah M, Magee TRA. Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Ind. Crop. Prod. 31: 171–177 (2010)

    Article  Google Scholar 

  24. Ojediran JO, Raji AO. Thin layer drying of millet and effect of temperature on drying characteristics. Int. Food Res. J. 17: 1095–1106 (2010)

    Google Scholar 

  25. Sharma GP, Prasad S. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Eng. 65: 609–617 (2004)

    Article  Google Scholar 

  26. Akpinar EK. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energ. Convers. Manage. 51: 2407–2418 (2010)

    Article  Google Scholar 

  27. Corzo O, Bracho N, Pereira A, Vásquez A. Weibull distribution for modelling air drying of coroba slices. LWT-Food Sci. Technol. 41: 2023–2028 (2008)

    Article  CAS  Google Scholar 

  28. Dissa AO, Bathiebo DJ, Desmorieux H, Coulibaly O, Koulidiati J. Experimental characterization and modelling of thin layer direct solar drying of ‘Amelia’ and ‘Brooks’ mangoes. Energy 36: 2517–2527 (2011)

    Article  Google Scholar 

  29. Montero I, Miranda T, Arranz JI, Rojas CV. Thin layer drying kinetics of byproducts from olive oil processing. Int. J. Mol. Sci. 12: 7885–7897 (2011)

    Article  Google Scholar 

  30. Kumar N, Sarkar BC, Sharma HK. Effect of air velocity kinetics of thin layer carrot pomace drying. Food Sci. Technol. Int. 17: 459–469 (2001)

    Article  Google Scholar 

  31. Kayisoglu S, Ertekin C. Vacuum drying kinetics of Barbunya bean (Phaseolus vulgaris L. elipticus Mart.). Philipp. Agric. Sci. 94: 285–291 (2011)

    Google Scholar 

  32. Crank J. Diffusion in sphere. pp. 84–98. In: The Mathematics of Diffusion. Clarendon Press, Inc., Oxford, London, UK (1975)

    Google Scholar 

  33. Dadali G, Ozbek B. Microwave heat treatment of leek: Drying kinetic and effective moisture diffusivity. Int. J. Food Sci. Tech. 43: 1443–1451 (2008)

    Article  CAS  Google Scholar 

  34. Pathare PB, Sharma GP. Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosyst. Eng. 93: 285–291 (2006)

    Article  Google Scholar 

  35. Ponkham K, Meeso N, Soponronnarit S, Siriamornpun S. Modeling of combined far-infrared radiation and air drying of a ring shapedpineapple with/without shrinkage. Food Bioprod. Process. 90: 155–164 (2012)

    Article  Google Scholar 

  36. Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 14: 2225–2253 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Doymaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doymaz, İ. Drying of pomegranate seeds using infrared radiation. Food Sci Biotechnol 21, 1269–1275 (2012). https://doi.org/10.1007/s10068-012-0167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0167-1

Keywords

Navigation