Skip to main content
Log in

Microbial levan from Pseudomonas fluorescens: Characterization and medium optimization for enhanced production

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Levan, a polyfructan which consists of D-fructofuranosyl residues linked predominantly by β-(2,6) linkage as a core chain with some β-(2,1) branch chains have potential applications in the pharmaceutical, food, and cosmetic industries. The present work reports on characterization of levan produced using Pseudomonas fluorescens by Fourier transform infrared spectroscopy (FTIR) and NMR and static fermentation condition optimization using one factor-at-a-time followed by statistical designs. The characterization of levan by FTIR revealed that structure of levan to be homologous to the standard levan sample. 13C and 1H NMR studies further successfully confirmed the levan structure. The optimized medium composition was observed to be (in g/L) sucrose 60; ammonium chloride 1.5; sodium nitrate 2.0, and casein peptone 15.0. The yield of levan was increased significantly from 5.27 to 15.42 g/L when the fermentation was carried out using optimal medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhee SK, Song KB, Kim CH, Park BS, Jang EK, Jang KH. Levan. pp. 351–377. In: Biopolymers-Polysaccharides from Prokaryotes. Vandamme EJ, De Baets S, Steinbychel A (eds). Wiley VCH Verlog, Weinheim, Germany (2002)

    Google Scholar 

  2. Han YW, Clarke MA. Production and characterization of microbial levan. J. Agr. Food Chem. 38: 393–396 (1990)

    Article  CAS  Google Scholar 

  3. Park H-E, Park NH, Kim M-J, Lee TH, Lee HG, Yang J-Y, Cha J. Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme Microb. Tech. 32: 820–827 (2003)

    Article  CAS  Google Scholar 

  4. Rairakhwada D, Pal A, Bhathena Z, Sahu N, Jha A, Mukherjee S. Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles. Fish Shellfish Immun. 22: 477–486 (2007)

    Article  CAS  Google Scholar 

  5. Gupta S, Pal A, Sahu N, Dalvi R, Kumar V, Mukherjee S. Microbial levan in the diet of Labeo rohita Hamilton juveniles: Effect on nonspecific immunity and histopathological changes after challenge with Aeromonas hydrophila. J. Fish Dis. 3: 649–657 (2008)

    Article  Google Scholar 

  6. Kang SA, Jang KH, Seo JW, Kim KH, Kim YH, Rairakhwada D, Seo MY, Lee JO, Do S, Ha CHK. Levan: Applications and perspectives. pp. 145–161. In: Microbial Production of Biopolymers and Polymer Precursors. Rehm BHA (ed). Caister Academic Press, Norfolk, UK (2009)

    Google Scholar 

  7. Jang K-H, Song K-B, Kim C, Chung B, Kang S, Chun U-H, Choue R, Rhee S-K. Comparison of characteristics of levan produced by different preparations of levansucrase from Zymomonas mobilis. Biotechnol. Lett. 23: 339–344 (2001)

    Article  CAS  Google Scholar 

  8. Simms PJ, Boyko WJ, Edwards JR. The structural analysis of a levan produced by Streptococcus salivarius SS2. Carbohyd. Res. 208: 193–198 (1990)

    Article  CAS  Google Scholar 

  9. Han YW, Watson MA. Production of microbial levan from sucrose, sugarcane juice, and beet molasses. J. Ind. Microbiol. Biot. 9: 257–260 (1992)

    CAS  Google Scholar 

  10. Fuchs A. Synthesis of levan by pseudomonads. Nature 178: 921 (1956)

    Article  CAS  Google Scholar 

  11. de Oliveira MR, da Silva RSSF, Buzato JB, Celligoi MAPC. Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem. Eng. J. 37: 177–183 (2007)

    Article  CAS  Google Scholar 

  12. Shih IL, Yu YT, Shieh CJ, Hsieh CY. Selective production and characterization of levan by Bacillus subtilis (natto) Takahashi. J. Agr. Food Chem. 53: 8211–8215 (2005)

    Article  CAS  Google Scholar 

  13. Keith J, Wiley B, Ball D, Arcidiacono S, Zorfass D, Mayer J, Kaplan D. Continuous culture system for production of biopolymer levan using Erwinia herbicola. Biotechnol. Bioeng. 38: 557–560 (1991)

    Article  CAS  Google Scholar 

  14. Küçükaćsik F, Kazak H, Güney D, Finore I, Poli A, Yenigün O, Nicolaus B, Öner E. Molasses as fermentation substrate for levan production by Halomonas sp. Appl. Microbiol. Biot. 89: 1729–1740 (2011)

    Article  Google Scholar 

  15. Borsari RRJ, Celligoi MAPC, Buzato JB, Silva RSSF. Influence of carbon source and the fermentation process on levan production by Zymomonas mobilis analyzed by the surface response method. Ciênc. Tecnol. Aliment. 26: 604–609 (2006)

    Article  CAS  Google Scholar 

  16. Ribbons DW, Dawes EA, Rees DA. Levan formation by Zymomonas mobilis (Pseudomonas lindneri). Biochem. J. 82(3): 45 (1962)

    Google Scholar 

  17. Perlot P, Monsan P. Production, purification, and immobilization of Bacillus subtilis levan sucrase. Ann. NY Acad. Sci. 434: 468–471 (1984)

    Article  CAS  Google Scholar 

  18. Muro AC, Rodríguez E, Abate CM, Siñeriz F. Levan production using mutant strains of Zymomonas mobilis in different culture conditions. Biotechnol. Lett. 22: 1639–1642 (2000)

    Article  CAS  Google Scholar 

  19. Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika 33: 305–325 (1946)

    Article  Google Scholar 

  20. Bule MV, Singhal RS. Use of carrot juice and tomato juice as natural precursors for enhanced production of ubiquinone-10 by Pseudomonas diminuta NCIM 2865. Food Chem. 116: 302–305 (2009)

    Article  CAS  Google Scholar 

  21. Yoshida Y, Suzuki R, Yagi Y. Production of levan by a Zymomonas sp. J. Ferment. Bioeng. 70: 269–271 (1990)

    Article  CAS  Google Scholar 

  22. Viikari L. Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Appl. Microbiol. Biot. 19: 252–255 (1984)

    Article  CAS  Google Scholar 

  23. Avigad G. Levans. Vol. 5, pp. 161–165. In: Methods in Carbohydrate Chemistry. Whistler RL (ed). Academic Press Inc., London, UK (1965)

    Google Scholar 

  24. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  25. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  26. Barone JR, Medynets M. Thermally processed levan polymers. Carbohyd. Polym. 69: 554–561 (2007)

    Article  CAS  Google Scholar 

  27. Zhao G, Kan J, Li Z, Chen Z. Structural features and immunological activity of a polysaccharide from Dioscorea opposita Thunb roots. Carbohyd. Polym. 61: 125–131 (2005)

    Article  CAS  Google Scholar 

  28. Fellah A, Anjukandi P, Waterland MR, Williams MAK. Determining the degree of methylesterification of pectin by ATR/ FT-IR: Methodology optimization and comparison with theoretical calculations. Carbohyd. Polym. 78: 847–853 (2009)

    Article  CAS  Google Scholar 

  29. Han YW. Levan production by Bacillus polymyxa. J. Ind. Microbiol. Biot. 4: 447–451 (1989)

    CAS  Google Scholar 

  30. Raymond D. Levansucrase from Bacillus subtilis. Vol. 8, pp. 500–505. In: Methods in Enzymology. Elizabeth F, Neufeld VG (eds). Academic Press, London, UK (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday S. Annapure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jathore, N.R., Bule, M.V., Tilay, A.V. et al. Microbial levan from Pseudomonas fluorescens: Characterization and medium optimization for enhanced production. Food Sci Biotechnol 21, 1045–1053 (2012). https://doi.org/10.1007/s10068-012-0136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0136-8

Keywords

Navigation