Skip to main content
Log in

In vivo imaging of Escherichia coli and Lactococcus lactis in murine intestines using a reporter luciferase gene

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A recombinant DNA, pMG36e::luc+ (5.3 kb), was constructed and transferred to Escherichia coli MC1061 and Lactococcus lactis MG1363 for in vivo imaging of the bacteria in murine intestines. E. coli MC1061 (pMG36e::luc+) and L. lactis MG1363 (pMG36e::luc+) displayed luciferase activities in vitro, where the bioluminescent signal of the E. coli was much stronger than that of the L. lactis by approximately 100-fold. These 2 recombinant bacteria were orally administered into rats. The bioluminescent signals of the E. coli and L. lactis in the gastrointestinal (GI) tracts of rats were detected and maintained up to 2 h via whole body imaging, indicating that the luciferase gene expression system for bacteria could be applied for in vivo imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: Successes, problems, and future prospects. Gut Pathog. 1: 19 (2009)

    Article  Google Scholar 

  2. Narayan SS, Jalgaonkar S, Shahani S, Kulkarni VN. Probiotics: Current trends in the treatment of diarrhoea. Hong Kong Med. J. 16: 213–218 (2010)

    Google Scholar 

  3. Chmielewska A, Szajewska H. Systematic review of randomised controlled trials: Probiotics for functional constipation. World J. Gastroentero. 16: 69–75 (2010)

    Google Scholar 

  4. Forsythe P, Bienenstock J. Immunomodulation by commensal and probiotic bacteria. Immunol. Invest. 39: 429–448 (2010)

    Article  CAS  Google Scholar 

  5. Gobbetti M, Cagno RD, De Angelis M. Functional microorganisms for functional food quality. Crit. Rev. Food Sci. 50: 716–727 (2010)

    Article  CAS  Google Scholar 

  6. de Moreno de Leblanc A, Perdigón G. The application of probiotic fermented milks in cancer and intestinal inflammation. P. Nutr. Soc. 69: 421–428 (2010)

    Article  Google Scholar 

  7. Iannitti T, Palmieri B. Therapeutic use of probiotic formulations in clinical practice. Clin. Nutr. 29: 701–725 (2010)

    Article  CAS  Google Scholar 

  8. Bezkorovainy A. Probiotics: Determinants of survival and growth in the gut. Am. J. Clin. Nutr. 73(suppl.): 399S–405S (2001)

    Google Scholar 

  9. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’sullivan GC, Shanahan F, Collins JK. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr. 73(suppl.):386S–392S (2001)

    CAS  Google Scholar 

  10. Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistance in mice. BMC Microbiol. 8: 161 (2008)

    Article  Google Scholar 

  11. Schultz M, Watzl S, Oelschlaeger TA, Rath HC, Göttl C, Lehn N, Schölmerich J, Linde HJ. Green fluorescent protein for detection of the probiotic microorganism Escherichia coli strain Nissle 1917 (EcN) in vivo. J. Microbiol. Methods 61: 389–398 (2005)

    Article  CAS  Google Scholar 

  12. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90: 1103–1163 (2010)

    Article  CAS  Google Scholar 

  13. Prescher JA, Contag CH. Guided by the light: Visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 14: 80–89 (2010)

    Article  CAS  Google Scholar 

  14. Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat. Protoc. 3: 629–636 (2008)

    Article  CAS  Google Scholar 

  15. de Palencia PF, de la Plaza M, Mohedano ML, Martínez-Cuesta MC, Requena T, López P, Peláez C. Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged lacticin 3147 producing Lactococcus lactis strain. Int. J. Food Microbiol. 93: 335–347 (2004)

    Article  Google Scholar 

  16. Geoffroy MC, Guyard C, Quatannens B, Pavan S, Lange M, Mercenier A. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl. Environ. Microb. 66: 383–391 (2000)

    Article  CAS  Google Scholar 

  17. Gory L, Montel MC, Zagorec M. Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol. Lett. 194: 127–133 (2001)

    Article  CAS  Google Scholar 

  18. Oddone GM, Lan CQ, Rawsthorne H, Mills DA, Block DE. Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis. Biotechnol. Bioeng. 96: 1127–1138 (2006)

    Article  Google Scholar 

  19. van de Guchte M, van der Vossen JMBM, Kok J, Venema G. Construction of a Lactococcal expression vector: Expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microb. 55: 224–228 (1989)

    Google Scholar 

  20. Moon GS, Lee YD, Kim WJ. Screening of a novel lactobacilli replicon from plasmids of Lactobacillus reuteri KCTC 3678. Food Sci. Biotechnol. 17: 438–441 (2008)

    CAS  Google Scholar 

  21. Lee MS, Kwon EH, Choi HS, Kwon SH, Lee CH, Shim IS, Lee SK, Her S. Quantification of cellular uptake and in vivo tracking of transduction using real-time monitoring. Biochem. Bioph. Res. Co. 394: 348–353 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Seong Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MS., Moon, GS. In vivo imaging of Escherichia coli and Lactococcus lactis in murine intestines using a reporter luciferase gene. Food Sci Biotechnol 21, 917–920 (2012). https://doi.org/10.1007/s10068-012-0120-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0120-3

Keywords

Navigation