Skip to main content
Log in

In vitro antioxidative and antimutagenic activities of oak mushroom (Lentinus edodes) and king oyster mushroom (Pleurotus eryngii) byproducts

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The in vitro antioxidative and antimutagenic activities of ethanolic extracts from oak mushroom (Lentinus edodes) and king oyster mushroom (Pleurotus eryngii) byproducts were investigated. The antioxidant capacity of the extracts was assessed by determining the ferricyanide reducing power, scavenging activity on nitrite, DPPH radical, superoxide anions and hydroxyl radicals, ferrous ion chelating ability, and inhibitory effect on linoleic acid peroxidation and xanthine oxidase. The antimutagenic activity, on the other hand, was based on the suppression of mitomycin C-induced mutagenesis in Escherichia coli cells. Both the mushroom extracts showed strong antioxidative and antimutagenic effects at higher concentrations. In general, extracts from the oak mushroom byproduct had greater antioxidative and antimutagenic abilities than that of the king oyster extract. Results of this study demonstrate that the mushroom byproducts possess strong antioxidant capacity in vitro and may be useful as a functional biomaterial in the preparation of health-promoting food products and animal feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang ST, Miles PG. Mushrooms: Cultivation, Nutritional Value, Medicinal Effects, and Environmental Impact. 2nd ed. CRC Press, Boca Raton, FL, USA. pp. 23–25 (2004)

    Book  Google Scholar 

  2. Fukushima M, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentonus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp. Biol. Med. 226: 758–765 (2001)

    CAS  Google Scholar 

  3. Kathatun K, Mahtab H, Khanam PA, Sayeed MA, Khan KA. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med. J. 16: 94–99 (2007)

    Google Scholar 

  4. Smith JE, Rowan NJ, Sullivan R. Medicinal mushrooms: A rapidly developing area of biotechnology for cancer and other bioactivities. Biotechnol. Lett. 24: 1845–1938 (2002)

    Article  Google Scholar 

  5. Wasser SP. Medicinal mushroom as a source of antitumor and immunomodulation polysaccharides. Appl. Microbiol. Biotechnol. 60: 258–274 (2002)

    Article  CAS  Google Scholar 

  6. Caglarirmak N. The nutrients of exotic mushrooms (Lentinula edodes and Pleurotus species) and an estimated approach to the volatile compounds. Food Chem. 105: 1188–1194 (2007)

    Article  CAS  Google Scholar 

  7. Sano M, Yoshino K, Matsuzawa T, Ikekawa T. Inhibitory effects of edible higher Basidiomycetes mushroom extracts on mouse type IV allergy. Int. J. Med. Mushrooms 4: 37–41 (2002)

    Google Scholar 

  8. Mau JL, Lin YP, Chen PT, Wu YH, Peng JT. Flavor compounds in king oyster mushroom Pleurotus eryngii. J. Agr. Food Chem. 46: 4587–4591 (1998)

    Article  CAS  Google Scholar 

  9. Oyaizu M. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Eiyogaku Zasshi 44: 307–315 (1986)

    Article  CAS  Google Scholar 

  10. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agr. Biol. Chem. Tokyo 51: 1333–1338 (1987)

    Article  CAS  Google Scholar 

  11. Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenecity. J. Agr. Food Chem. 43: 27–32 (1995)

    Article  CAS  Google Scholar 

  12. Mitsuta K, Mizuta Y, Kohno M, Hiramatsu M. The application of ESR spin-trapping technique to the evaluation of SOD-like activity of biological substances. Bull. Chem. Soc. Jpn. 63: 187–190 (1990)

    Article  CAS  Google Scholar 

  13. Noro T, Noro K, Miyase T, Kuroyanagi M, Umehara K, Ueno A, Fukushima S. Inhibition of xanthine oxidase by anthraquinones. Chem. Pharm. Bull. 35: 4314–4316 (1987)

    Article  CAS  Google Scholar 

  14. Rosen GM, Rauckman EJ. Spin trapping of free radicals during hepatic microsomal lipid peroxidation. P. Natl. Acad. Sci. USA 78: 7346–7349 (1981)

    Article  CAS  Google Scholar 

  15. Carter P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 40: 450–458 (1971)

    Article  CAS  Google Scholar 

  16. Mitsuda H, Yasumoto K, Iwami K. Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo To Shokuryo 19: 210–214 (1966)

    Article  CAS  Google Scholar 

  17. Quillardet P, Hofnung M. The SOS chromotest, a colorimetric bacterial assay for genotoxins: Procedures. Mutat. Res. 147: 65–78 (1985)

    CAS  Google Scholar 

  18. Mersch-Sundermann V, Kevekordes S, Mochayedi S. Source of variability of the Escherichia coli PQ37 genotoxicity assay (SOS chromotest). Mutat. Res. 252: 51–60 (1990)

    Google Scholar 

  19. MacDonald-Wicks LK, Wood LG, Garg ML. Methodology for the determination of biological antioxidant capacity in vitro: A review. J. Sci. Food Agr. 86: 2046–2056 (2006)

    Article  CAS  Google Scholar 

  20. Jeon TW, Jo CH, Kim KH, Byun MW. Inhibitory effect on tyrosinase and xanthine oxidase, and nitrite scavenging activities of Schizandrae Fructus extract by γ irradiation. Korean J. Food Preserv. 9: 369–374 (2002)

    Google Scholar 

  21. Wang BS, Li BS, Zeng QX, Liu HX. Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater. Food Chem. 107: 1198–1204 (2008)

    Article  CAS  Google Scholar 

  22. Aurand LW, Boone NH, Giddings GG. Superoxide and singlet oxygen in milk lipid peroxidation. J. Dairy Sci. 60: 363–369 (1977)

    Article  CAS  Google Scholar 

  23. Lopes GK, Schulman HM, Hermes-Lima M. Polyphenol tannic acid inhibits hydroxyl radical formation from the Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta 1472: 142–152 (1999)

    Article  CAS  Google Scholar 

  24. Miller JA. Brief history of chemical carcinogenesis. Cancer Lett. 83: 9–14 (1994)

    Article  CAS  Google Scholar 

  25. Yoon MR, Nam SH, Kang MY. Antioxidative and antimutagenic activities of 70% ethanolic extracts from four fungal myceliafermented specialty rices. J. Clin. Biochem. Nutr. 43: 118–125 (2008)

    Article  Google Scholar 

  26. Cheung LM, Cheung PCK, Ooi VEC. Antioxidant activity and total phenolic of edible mushroom extracts. Food Chem. 81: 249–255 (2003)

    Article  CAS  Google Scholar 

  27. Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov. Food Sci. Emerg. 10: 228–234 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M.Y., Rico, C.W. & Lee, S.C. In vitro antioxidative and antimutagenic activities of oak mushroom (Lentinus edodes) and king oyster mushroom (Pleurotus eryngii) byproducts. Food Sci Biotechnol 21, 167–173 (2012). https://doi.org/10.1007/s10068-012-0021-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0021-5

Keywords

Navigation