Skip to main content
Log in

Optimization of process conditions for the production of a prolylendopeptidase by Aspergillus niger ATCC 11414 in solid state fermentation

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of 8 factors [(with/without) daily mixing and moisture control, incubation time (t), temperature, ratio between dry substrate mass and bed’s cross section area (MA), inoculum size (spores/g), wheat germ content (WG), initial pH, and moisture content (M)] in the production of a prolyl endopeptidase (PEP) by Aspergillus niger ATCC 11414 in solid state fermentation (SSF) was tested. Contribution of all the factors was significant (p<0.05); main effects were those of MA, t, and M. The 4 interactions that presented high interaction severity indexes involved the WG. Under optimized conditions PEP and protease activity were 9.76±0.06 and 3.6×106±1.5×105 U/kg, respectively. The enzyme was partially purified (ammonium sulfate precipitation, dialysis, DEAE-Sepharose ionexchange); it has a molecular weight of 66 kDa (SDS-PAGE), and maximum activity was exhibited at pH 4 and 50°C. The enzyme is stable in a wide pH range (2.2–10) and at temperatures lower than 70°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chevallier S, Goeltz P, Thibaultg P, Banvillel D, Gagnon J. Characterization of a prolyl endopeptidase from Flavobacterium meningosepticum. J. Biol. Chem. 267: 8192–8199 (1992)

    CAS  Google Scholar 

  2. Brömme D, Peters K, Fink S, Fittkau S. Enzyme-substrate interactions in the hydrolysis of peptide substrates by thermitase, subtilisin BPN, and proteinase K. Arch. Biochem. Biophys. 244: 439–446 (1986)

    Article  Google Scholar 

  3. Fülöp V, Böcskei Z, Polgár L. Prolyl oligopeptidase: An unusual beta-propeller domain regulates proteolysis. Cell 94: 161–170 (1998)

    Article  Google Scholar 

  4. Araki H, Ouchi H, Uesugi S, Hashimoto Y, Shimoda T. Prolyl endopeptidase and production thereof. EP19920111124 (1993)

  5. Kubota K, Tanokura M, Takahashi K. Purification and characterization of a novel prolyl endopeptidase from Aspergillus niger. Proc. Jpn. Acad. Ser. B 81: 447–453 (2005)

    Article  CAS  Google Scholar 

  6. Edens L, Dekker P, van der Hoeven R, Deen F, de Roos A, Floris R. Extracellular prolyl endoprotease from Aspergillus niger and its use in debittering of protein hidrolysates. J. Agr. Food Chem. 53: 7950–7957 (2005)

    Article  CAS  Google Scholar 

  7. Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, van Veelen P, Edens L, Frits K. Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease. Am. J. Physiol. -Gastr. L. 291: G621–G629 (2006)

    CAS  Google Scholar 

  8. Gass J, Bethune M, Siegel M, Spencer A, Khosla C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 133: 472–480 (2007)

    Article  CAS  Google Scholar 

  9. Marti T, Molberg Ø, Li Q, Gray G, Khosla C, Sollid L. Prolyl endopeptidase-mediated destruction of T-cell epitopes in whole gluten: Chemical and immunological characterization. J. Pharmacol. Exp. Ther. 312: 19–26 (2005)

    Article  CAS  Google Scholar 

  10. Lopez M, Edens L. Effective prevention of chill-haze in beer using an acid proline specific endoprotease from Aspergillus niger. J. Agr. Food Chem. 53: 7944–7949 (2005)

    Article  CAS  Google Scholar 

  11. Aguilar CN, Favela-Torres E, Viniegra-González G, Augur C. Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl. Biochem. Biotech. 102: 407–414 (2002)

    Article  Google Scholar 

  12. Stamatis DH. TQM Engineering Handbook. Marcel Dekker, New York, NY, USA. pp. 230–235 (1997)

    Google Scholar 

  13. Rao RS, Kumar K, Prakasham S, Hobbs P. The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnol. J. 3: 510–523 (2008)

    Article  CAS  Google Scholar 

  14. Laemmli UK. Cleavage of structural proteins during assembly of the bacteriophage T4. Nature 227: 680–685 (1970)

    Article  CAS  Google Scholar 

  15. Aoki H, Ahsan N, Matsuo K, Hagiwara T, Watabe S. Purification and characterization of collagenolytic proteases from hepatopancreas of northern shrimp (Pandalus eous). J. Agr. Food Chem. 51: 777–783 (2003)

    Article  CAS  Google Scholar 

  16. Lowry O, Rosebrough N, Farr A, Rondall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–273 (1951)

    CAS  Google Scholar 

  17. Dubois M, Gilles DA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  18. Brock F, Forsberg C, Buchanan J. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microb. 44: 561–569 (1982)

    CAS  Google Scholar 

  19. Erlanger B, Kokowsky N, Cohen N. The preparation and properties of two new chromogenic substrate of trypsin. Arch. Biochem. Biophys. 95: 271–278 (1961)

    Article  CAS  Google Scholar 

  20. Malathi S, Chakraborty R. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Appl. Environ. Microb. 57: 712–716 (1991)

    CAS  Google Scholar 

  21. Chakraborty R, Srinivasan M, Sarkar SK, Raghvan KV. Production of acid protease by a new Aspergillus niger by solid substrate fermentation. J. Microbiol. Biotechn. 10: 17–30 (1995)

    CAS  Google Scholar 

  22. Agrawal D, Patidar P, Banerjee T, Patil S. Production of alkaline protease by Penicillium sp. under SSF conditions and its application to soy protein hydrolysis. Process Biochem. 39: 977–981 (2004)

    Article  CAS  Google Scholar 

  23. Moon SH, Parulekar SJ. A parametric study of protease production in batch and fed-batch cultures of Bacillus firmus. Biotechnol. Bioeng. 37: 467–483 (1991)

    Article  CAS  Google Scholar 

  24. Aikat K, Bhattacharyya BC. Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by soft gel technique. Process Biochem. 35: 907–914 (2000)

    Article  CAS  Google Scholar 

  25. Yang FC, Lin IH. Production of acid protease using thin stillage from a rice-spirit distillery by Aspergillus niger. Enzyme Microb. Tech. 23: 397–402 (1998)

    Article  CAS  Google Scholar 

  26. Schaal R, Kupfahl C, Buchheidt D, Neumaier M, Findeisen P. Systematic identification of substrates for profiling of secreted proteases from Aspergillus species. J. Microbiol. Meth. 71: 93–100 (2007)

    Article  CAS  Google Scholar 

  27. Kabashima T, Fujii M, Meng Y, Ito K, Yoshimoto T. Prolyl endopeptidase from Sphingomonas capsulata: Isolation and characterization of the enzyme and nucleotide sequence of the gene. Arch. Biochem. Biophys. 358: 141–148 (1998)

    Article  CAS  Google Scholar 

  28. Szwajcer-dey E, Rasmussen J, Meldal M, Breddam K. Prolinespecific endopeptidases from microbial sources: Isolation of an enzyme from a Xanthomonas sp. J. Bacteriol. 174: 2454–2459 (1992)

    CAS  Google Scholar 

  29. Harwood V, Denson J, Robinson-Bidle K, Schreier H. Overexpression and characterization of a prolyl endopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 179: 3613–3618 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Shene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esparza, Y., Huaiquil, A., Neira, L. et al. Optimization of process conditions for the production of a prolylendopeptidase by Aspergillus niger ATCC 11414 in solid state fermentation. Food Sci Biotechnol 20, 1323 (2011). https://doi.org/10.1007/s10068-011-0182-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10068-011-0182-7

Keywords

Navigation