Skip to main content
Log in

Aqueous two-phase extraction of bromelain from pineapple peels (‘Phu Lae’ cultv.) and its biochemical properties

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study examines the extraction of bromelain from pineapple peels by using an aqueous two-phase system (ATPS). Bromelain from the crude extract predominantly partitioned to the polyethylene glycol rich phase. The best condition for bromelain partitioning was found to be 18% PEG6000-17% MgSO4, which increased purity 3.44-fold with an activity recovery of 206%. Protein patterns and activity staining showed the molecular weight of bromelain to be about 29 kDa. The bromelain showed the highest relative activity at pH 8.0 and at 60°C. When increasing NaCl concentrations (up to 1.5%, w/v), its activity continuously decreased. The bromelain (0–0.3 units) was applied to hydrolyze collagen. The β, α1, α2 components of collagen extensively degraded into small peptides when treated with the bromelain. This study showed that the ATPS can be employed to isolate the bromelain from pineapple peels and the bromelain extract could be used as a meat tenderizing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ketnawa S, Chaiwut P, Rawdkuen S. Partitioning of bromelain from pineapple peel (’Nang Lae’ cultv.) by aqueous two phase system. Asian J. Food Agro Ind. 2: 457–468 (2009)

    Google Scholar 

  2. Imandi SB, Bandaru VV, Somalanka SR, Bandaru SR, Garapati HR. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresource Technol. 99: 4445–4450 (2008)

    Article  CAS  Google Scholar 

  3. Schieber A, Stintzing FC, Carle RV. Byproducts of plant food processing as a source of functional compounds recent developments. Trends Food Sci. Tech. 12: 401–413 (2001)

    Article  CAS  Google Scholar 

  4. Jamal P, Fahururrazi TM, Zagangir AM. Optimization of media composition for the production of bioprotein from pineapple skins by liquid-state bioconversion. J. Appl. Sci. 93: 3104–3109 (2009)

    Google Scholar 

  5. Umesh HH, Sumana B, Raghavarao KSMS. Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresource Technol. 99: 4896–4902 (2008)

    Article  Google Scholar 

  6. Lizuka K, Aishima T. Tenderization of beef with pineapple juice monitored by Fourier transform infrared spectroscopy and chemometric analysis. J. Food Sci. 64: 973–977 (1999)

    Article  Google Scholar 

  7. Chuapoehuk P, Raksakulthai N. Use of papain and bromelain in the production of oyster sauce. Asian Food J. 7: 196–199 (1992)

    CAS  Google Scholar 

  8. Walsh G. Protein Biochemistry and Biotechnology. John Wiley and Sons, Chichester, UK. pp. 37–38, 419–435 (2002)

    Google Scholar 

  9. Koh J, Kang SM, Kim SJ, Cha MK, Kwon YJ. Effect of pineapple protease on the characteristics of protein fibers. Fibre Polym. 7: 180–185 (2006)

    Article  CAS  Google Scholar 

  10. Salampessy J, Phillips M, Seneweera S, Kailasapathy K. Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food Chem. 120: 556–560 (2010)

    Article  CAS  Google Scholar 

  11. Maurer HR. Bromelain: Biochemistry, pharmacology, and medical use. Cell Mol. Life Sci. 58: 1234–1245 (2001)

    Article  CAS  Google Scholar 

  12. Devakate RV, Patil VV, Waje SS, Thorat BN. Purification and drying of bromelain. Sep. Purif. Technol. 64: 259–264 (2009)

    Article  CAS  Google Scholar 

  13. Rowan AD, Buttle DJ, Barrett AJ. The cysteine proteinases of the pineapple plant. Biochem. J. 266: 869–875 (1990)

    CAS  Google Scholar 

  14. Doko MB, Bassani V, Casadebaig JL, Jacob M. Preparation of proteolytic enzyme extracts from Ananas comosus L., Merr. fruit juice using semipermeable membrane, ammonium sulfate extraction, centrifugation, and freeze drying process. Int. J. Pharm. 76: 199–206 (1991)

    Article  CAS  Google Scholar 

  15. Babu B, Rastogi NK, Raghavarao KSMS. Liquid-liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chem. Eng. Process. 47: 83–89 (2008)

    Article  CAS  Google Scholar 

  16. Nitsawang S. Hatti-Kaul R. Kanasawud P. Purification of papain from Carica papaya latex: Aqueous two-phase extraction versus two-step salt precipitation. Enzyme Microb. Tech. 39: 1103–1107 (2006)

    Article  CAS  Google Scholar 

  17. Chaiwut P, Rawdkuen S, Benjakul S. Extraction of protease from Calotropis procera latex by polyethyleneglycol-salts biphasic system. Process Biochem. 45: 1148–1155 (2010)

    Article  CAS  Google Scholar 

  18. Ketnawa S, Rawdkuen S, Chaiwut P. Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel ‘Nang Lae’ cultivar. Biochem. Eng. J. 52: 205–211 (2010)

    Article  CAS  Google Scholar 

  19. Murachi T. Bromelain enzymes. Vol. I, pp. 475–485. In: Methods in Enzymology. Lorand L (ed). Academic Press, New York, NY, USA (1976)

    Google Scholar 

  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  21. Laemmli UK. Cleavage of structural during assembly of head of bacteriophage T4. Nature 227: 680–685 (1970)

    Article  CAS  Google Scholar 

  22. Garcia-Carreno FC, Dimes CE, Haard NF. Substrate gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem. 214: 65–69 (1993)

    Article  CAS  Google Scholar 

  23. Saito M, Kunisaki N, Urano N, Kimura S. Collagen as the major edible component of sea cucumber (Stichopus japonicus). J. Food Sci. 67: 1319–1322 (2002)

    Article  CAS  Google Scholar 

  24. Nalinanon S, Benjakul S, Visessanguan W, Kishimura H. Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems. Process Biochem. 44: 471–476 (2009)

    Article  CAS  Google Scholar 

  25. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Partitioning and recovery of proteinase from spleen by aqueous two-phase systems. Process Biochem. 40: 3061–3067 (2005)

    Article  CAS  Google Scholar 

  26. Vallés D, Furtado S, Cantera AMB. Characterization of news proteolytic enzymes from ripe fruits of Bromelia antiacantha Bertol (Bromeliaceae). Enzyme Microb. Tech. 40: 409–413 (2007)

    Article  Google Scholar 

  27. Bruno MA, Sebastian A, Trejo Xavier F, Nestor A, Caffini O, Laura M, Lopez I. Isolation and characterization of Hieronymain II, another peptidase isolated from fruits of Bromelia hieronymi Mez. (Bromeliaceae). Protein J. 25: 1–7 (2006)

    Article  Google Scholar 

  28. Kaul RH. Aqueous Two-phase Systems. Humana Press Inc., New York, NJ, USA. pp. 269–277 (2000)

    Book  Google Scholar 

  29. Sikorski ZE. Chemical and Functional Properties of Food Protein. Technomic Publishing, Lancaster, CA, USA. pp. 233–256 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroat Rawdkuen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketnawa, S., Chaiwut, P. & Rawdkuen, S. Aqueous two-phase extraction of bromelain from pineapple peels (‘Phu Lae’ cultv.) and its biochemical properties. Food Sci Biotechnol 20, 1219 (2011). https://doi.org/10.1007/s10068-011-0168-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10068-011-0168-5

Keywords

Navigation