Skip to main content
Log in

Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum has been reported to be responsible for acid increase at the later stage of kimchi fermentation and considered not inappropriate as a starter of kimchi. If functional L. plantarum strain can survive in large quantity in kimchi during fermentation, it may endow new functionality to kimchi. After 12 day fermentation at 4°C, L. plantarum, Leuconostoc mesenteroides, Weissella cibaria, Weissella confusa, and Lactobacillus sakei were the most prevalent ones in kimchi without a starter. In kimchi with a starter, L. plantarum was detected from the 1 day fermentation and throughout 25 day fermentation. There was no difference in pH between 2 kinds of kimchi. The acid content after the 21 day increased more in kimchi with starter when most kimchi is consumed before this time. Survival of a starter strain throughout the whole fermentation suggested the possible use of various functional lactic acid-producing bacterias (LABs) to kimchi endowing a new beneficial function to kimchi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. No HK, Lee SH, Kim SD. Effects of ingredients on fermentation of Chinese cabbage kimchi. J. Korean Soc. Food Nutr. 24: 642–650 (1995)

    Google Scholar 

  2. Jeon YS, Kye IS, Cheigh HS. Changes of vitamin C and fermentation characteristics of kimchi on different cabbage variety and fermentation temperature. J. Korean Soc. Food Sci. Nutr. 28: 773–779 (1999)

    CAS  Google Scholar 

  3. Park SJ, Park KY, Jun HK. Effects of commercial salts on the growth of kimchi-related microorganisms. J. Korean Soc. Food Sci. Nutr. 30: 806–813 (2001)

    CAS  Google Scholar 

  4. Lim CR, Park HK, Han HU. Reevaluation of isolation and identification of Gram-positive bacteria in kimchi. Korean J. Microbiol. 27: 404–414 (1989)

    Google Scholar 

  5. Lee CW, Ko CY, Ha DM. Microbiotal changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102–109 (1992)

    CAS  Google Scholar 

  6. Lee MK, Park WS, Kang KH. Selective media for isolation and enumeration of lactic acid bacteria from kimchi. J. Korean Soc. Food Sci. Nutr. 25: 754–760 (1996)

    Google Scholar 

  7. De Man JC, Rogosa M, Sharpe EM. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 30–35 (1960)

    Google Scholar 

  8. Yeung PS, Sanders ME, Kitts CL, Cano R, Tong PS. Speciesspecific identification of commercial probiotic strains. J. Dairy Sci. 85: 1039–1051 (2002)

    Article  CAS  Google Scholar 

  9. Rizzo AF, Korkeala H, Mononen I. Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of lactobacilli. Appl. Environ. Microb. 53: 2883–2888 (1987)

    CAS  Google Scholar 

  10. Song Y, Kato N, Lin C, Matsumiya Y, Kato H, Watanabe K. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S r RNA intergenic spacer region and its flanking 23S r RNA. FEMS Microbiol. Lett. 187: 167–173 (2000)

    CAS  Google Scholar 

  11. Kim MJ, Chun JS. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S r RNA gene analysis. Int. J. Food. Microbiol. 103: 91–96 (2005)

    Article  CAS  Google Scholar 

  12. Duthoit F, Godon JJ, Montel MC. Bacterial community dynamics during production of registered desination of origin salers cheese as evaluated by 16Sr RNA gene single-strand conformation polymorphism analysis. Appl. Environ. Microb. 69: 3840–3848 (2003)

    Article  CAS  Google Scholar 

  13. Ogier JC, Son O, Gruss O, Tailliez P, Delacroix-Buchet A. Identification of bacterial microbiota in dairy products by temporal temperature gradient gel electrophoresis. Appl. Environ. Microb. 68: 3691–3701(2002)

    Article  CAS  Google Scholar 

  14. Endo A, Okada S. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J. Biosci. Bioeng. 19: 216–221(2005)

    Article  Google Scholar 

  15. Kleikemper J, Pombo SA, Schroth MH, Sigler WV, Pesaro M, Zeyer J. Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microb. 71: 149–158 (2005)

    Article  CAS  Google Scholar 

  16. Diez B, Pedros-Alio C, Marsh TL, Massana R. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl. Environ. Microb. 67: 2942–2951 (2001)

    Article  CAS  Google Scholar 

  17. Santegoeds CM, Nold SC, Ward DM. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. Envirol. Microb. 62: 3922–3928 (1996)

    CAS  Google Scholar 

  18. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis of polymerase chain reaction amplified genes coding for 16SrRNA. Appl. Environ. Microb. 59: 695–700 (1993)

    CAS  Google Scholar 

  19. Lee K, Paek K, Lee HY, Park JH, Lee Y. Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J. Appl. Microbiol. 103: 1140–1146 (2007)

    Article  CAS  Google Scholar 

  20. Lee HM, Lee Y. A differential medium for lactic acid-producing bacteria in a mixed culture. Lett. Appl. Microbiol. 46: 676–681 (2008)

    Article  Google Scholar 

  21. Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16SrRNA genes by PCR. Appl. Environ. Microb. 62: 625–630 (1996)

    CAS  Google Scholar 

  22. Ennahar S, Cai Y. Genetic evidence that Weissella kimchii Choi et al. 2002 is a later heterotypic synonym of Weissella cibaria Brorkroth et al. 2002. Int. J. Syst. Evol. Micr. 54: 463–465 (2004)

    Article  CAS  Google Scholar 

  23. Jang J, Kim B, Lee J, Kim J, Jeong G, Han H. Identification of Weissella species by the genus-specific amplified ribosomal DNA restriction analysis. FEMS Microbiol. Lett. 212: 29–34 (2002)

    Article  CAS  Google Scholar 

  24. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microb. 67: 2578–2585 (2001)

    Article  CAS  Google Scholar 

  25. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chainterminating inhibitors. P. Natl. Acad. Sci. USA 74: 5463–5467 (1977)

    Article  CAS  Google Scholar 

  26. Lee JS, Heo GY, Lee JW, Oh YJ, Park JA, Park YH, Pyun YR, Ahn JS. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food. Microbiol. 102: 143–150 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonhee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Lee, Y. Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi. Food Sci Biotechnol 19, 641–646 (2010). https://doi.org/10.1007/s10068-010-0090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0090-2

Keywords

Navigation