Skip to main content
Log in

Effects of persimmon-vinegar on lipid and carnitine profiles in mice

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of persimmon-vinegar supplementation on blood lipid profiles, carnitine concentrations, and hepatic mRNA levels of enzymes involved in fatty acid metabolism. Thirty-two C57BL/6J male mice were divided into 4 groups; control group (HD), industrial vinegar group (HD-V), and persimmon-vinegar groups (HD-PV1, HD-PV2). Serum triglyceride (TG) and total cholesterol (TC) concentrations significantly decreased in all vinegar-administered groups compared with the HD group. The hepatic TG and TC concentrations of persimmon-vinegar administered groups were significantly lower compared with the HD group. Liver acid insoluble acylcarnitine (AIAC) was significantly higher in the HD-PV2 than in HD and HD-V groups. The acetyl-CoA carboxylase (ACC) mRNA level tended to lower in all the vinegar administered groups compared with the HD group. These results suggest that the persimmon-vinegar has anti-obesity properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doucet E, Tremblay A. Food intake, energy balance, and body weight control. Eur. J. Clin. Nutr. 51: 846–855 (1997)

    Article  CAS  Google Scholar 

  2. Friedman JM, Leibel RL. Tackling a weighty problem. Cell 69: 217–220 (1992)

    Article  CAS  Google Scholar 

  3. Park SH, Jang MJ, Hong JH, Rhee SJ, Choi KH, Park MR. Effects of mulberry leaf extract feeding on lipid status of rats fed high cholesterol diets. J. Korean Soc. Food Sci. Nutr. 36: 43–50 (2007)

    Article  Google Scholar 

  4. Kim DH, Byun MW. Application of radiation technology on the processing of Korean traditional fermentation food. Food Ind. Nutr. 6: 38–44 (2001)

    Google Scholar 

  5. Sakanaka S, Ishihara Y. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem. 107: 739–744 (2008)

    Article  CAS  Google Scholar 

  6. Xu QP, Tao WY, Ao ZH. Antioxidant activity of vinegar melanoidins. Food Chem. 102: 841–849 (2007)

    Article  CAS  Google Scholar 

  7. Fukuyama N, Jujo S, Ito I, Shizuma T, Myojin K, Ishiwata K, Nagano M, Nakazawa H, Mori H. Kurozu moromimatsu inhibits tumor growth of Lovo cells in a mouse model in vivo. Nutrition 23: 81–86 (2007)

    Article  Google Scholar 

  8. Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Brit. J. Nutr. 95: 916–924 (2006)

    Article  CAS  Google Scholar 

  9. So IC, Choi SK. The influence of persimmon vinegar and octacosanol mixture administration on exercise performance ability and blood fatigue factors. Korean J. Sport. Sci. 16: 791–802 (2007)

    Google Scholar 

  10. Moon YJ, Cha YS. Effects of persimmon-vinegar on lipid metabolism and alcohol clearance in chronic alcohol-fed rats. J. Med. Food 11: 38–45 (2008)

    Article  CAS  Google Scholar 

  11. Kim MK, Kim MJ, Kim SY, Jung DS, Jung YJ, Kim SD. Quality of persimmon vinegar fermented by complex fermentation method. J. East Asian Soc. Diet. Life 4: 39–50 (1994)

    Google Scholar 

  12. Jeong YJ, Lee GD, Kim KS. Optimization for the fermentation condition of persimmon-vinegar using response surface methodology. Korean J. Food Sci. Technol. 30: 1203–1208 (1998)

    Google Scholar 

  13. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509 (1957)

    CAS  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499–502 (1972)

    CAS  Google Scholar 

  15. Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin. Chim. Acta 37: 235–243 (1972)

    Article  CAS  Google Scholar 

  16. Sachan DS, Rhew TH, Ruark RA. Ameliorating effects of carnitine and its precursors on alcohol-induced fatty liver. J. Clin. Nutr. 39: 738–744 (1984)

    CAS  Google Scholar 

  17. Fushimi T, Sato Y. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Brit. J. Nutr. 94: 714–719 (2005)

    Article  CAS  Google Scholar 

  18. Gorinstein S, Zemser M, Weitz M, Halevy S, Deutsch J, Tilus K, Feintuch D, Guerra N, Fishman M, Bartnikowska E. Fluorometric analysis of phenolics in persimmon. Biosci. Biotech. Bioch. 58: 1087–1092 (1994)

    Article  CAS  Google Scholar 

  19. Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. J. Nutr. 128: 2023–2027 (1998)

    CAS  Google Scholar 

  20. Gorinstein S, Kulasek GW, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M, Trakhtenberg S. The influence of persimmon peel and persimmon pulp on the lipid metabolism and antioxidant activity of rats fed cholesterol. J. Nutr. Biochem. 9: 223–227 (1998)

    Article  CAS  Google Scholar 

  21. Gorinstein S, Kulasek GW, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M, Trakhtenberg S. The effects of diets, supplemented with either whole persimmon or phenol-free persimmon, on rats fed cholesterol. Food Chem. 70: 303–308 (2000)

    Article  CAS  Google Scholar 

  22. Bremer J. Carnitine—metabolism and functions. Physiol. Rev. 63: 1420–1480 (1983)

    CAS  Google Scholar 

  23. Krahenbuhl S. Carnitine metabolism in chronic liver disease. Life Sci. 59: 1579–1599 (1996)

    Article  CAS  Google Scholar 

  24. Park SH, Park TS, Cha YS. Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6J mice. Nutr. Res. Pract. 2: 227–233 (2008)

    Article  CAS  Google Scholar 

  25. Gornicki P. Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. Int. J. Parasitol. 33: 885–896 (2003)

    Article  CAS  Google Scholar 

  26. Zang Y, Wang T, Xie W, Wang-Fischer YL, Getty L, Han J, Corkey BE, Guo W. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes. Res. 13: 1530–1539 (2005)

    Article  CAS  Google Scholar 

  27. Fushimi T, Tayama K, Fukaya M, Kitakoshi K, Nakai N, Tsukamoto Y, Sato Y. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131: 1973–1977 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Soo Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, YJ., Choi, DS., Oh, SH. et al. Effects of persimmon-vinegar on lipid and carnitine profiles in mice. Food Sci Biotechnol 19, 343–348 (2010). https://doi.org/10.1007/s10068-010-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0049-3

Keywords

Navigation