Skip to main content
Log in

Phytochemical profiles and in vitro anti-inflammatory properties of Perilla frutescens cv. Chookyoupjaso mutants induced by mutagenesis with γ-ray

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In earlier investigations, Perilla frutescens (L.) Britt. cv. Chookyoupjaso (CJC) mutants were obtained following mutagenesis induced by 200 Gy of γ-rays. The aim of this study was to compare the CJC and 6 P. frutescens (L.) Britt. cv. Chookyoupjaso mutant lines (CJMs), with respect to their phytochemical profiles and to evaluate anti-inflammatory properties by selecting the most bioactive CJM. The methanol extracts of CJMs were tested for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Among them, CJM-45 showed significant inhibition of NO production. This extract was further partitioned using ethyl acetate (EtOAc), butanol (BuOH), and water. The EtOAc fraction (EF-cjm45) was evaluated for antiinflammatory activities. These results indicated that the EF-cjm45 reduced NO production by inhibiting inducible nitric oxide synthase (iNOS) expression. The EF-cjm45 treatment also significantly diminished expression of MCP-1 and IL-6. In the EF-cjm45, perillaketone, isoegomaketone, ursolic acid, kaempferol, and rosmarinic acid were also found. This study reveals the potential therapeutic use of bioactive CJM-45 and justifies the wide application for this plant in traditional medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng Y, Ye J, Kong J. Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J. Agr. Food Chem. 53: 8141–8147 (2005)

    Article  CAS  Google Scholar 

  2. Ueda H, Yamazaki C, Yamazaki M. Luteolin as an antiinflammatory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 25: 1197–1202 (2002)

    Article  CAS  Google Scholar 

  3. Yamamoto H, Sakakibara J, Nagatsu A, Sekiya K. Inhibitors of arachidonate lipoxygenase from defatted perilla seed. J. Agr. Food Chem. 46: 862–865 (1998)

    Article  CAS  Google Scholar 

  4. Nakamura Y, Ohto Y, Murakami A, Ohigashi H. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton var. acuta f. viridis. J. Agr. Food Chem. 46: 4545–4550 (1998)

    Article  CAS  Google Scholar 

  5. Ueda H, Yamazaki M. Anti-inflammatory and anti-allergic action by oral administration of a Perilla leaf extract in mice. Biosci. Biotech. Bioch. 65: 1673–1675 (2001)

    Article  CAS  Google Scholar 

  6. Ishikura N. Anthocyanins and flavones in leaves and seeds of Perilla plant. Agr. Biol. Chem. Tokyo 45: 1855–1860 (1981)

    CAS  Google Scholar 

  7. Aritomi M, Kumori T, Kawasaki T. Cyanogenic glycosides in leaves of Perilla frutescens var. acuta. Phytochemistry 24: 2438–2439 (1985)

    Article  CAS  Google Scholar 

  8. Tada M, Matsumoto R, Yamaguchi H, Chiba K. Novel antioxidants isolated from Perilla frutescens Britt. var. crispa (Thunb). Biosci. Biotech. Bioch. 60: 1093–1095 (1996)

    Article  CAS  Google Scholar 

  9. Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd El Moneim AM, Khawaja HIT, Yadov CR, Tay JU, Araya WA. Current status and future strategy in breeding grasspea (Lathyrus sativus). Euphytica 73: 167–175 (1993)

    Article  Google Scholar 

  10. Brunner H. Radiation induced mutations for plant selection. Appl. Radiat. Isotopes 46: 589–594 (1995)

    Article  CAS  Google Scholar 

  11. Lee YI, Kim JK, Lee IS, Kim DS. Variation of leaf flavor components in progenies of perilla mutants induced by gamma ray. Korea J. Breed. 31: 114–118 (1999)

    Google Scholar 

  12. Abdulla RF, Fuhr KH. An efficient conversion of ketones to α,β-unsaturated ketones. J. Org. Chem. 43: 4248–4250 (1978

    Article  CAS  Google Scholar 

  13. Namata A, Yang P, Takahashi C, Fujiki R, Nabae M, Fujita E. Cytotoxic triterpenes from a Chinese medicine, Goreishi. Chem. Pharm. Bull. 37: 648–651 (1989)

    Google Scholar 

  14. Kim BG, Kim H, Kim JH, Lim Y, Ahn JH. Synthesis of ermanin, 5,7-dihydroxy-3,4′-dimethoxyflavone from kaempferol, 3,5,7,4′-tetrahydroxylflavone with 2 O-methyltransferases expressed in E. coli. Bull. Korean Chem. Soc. 27: 357–358 (2006)

    Article  CAS  Google Scholar 

  15. Simpol LR, Otsuka H, Ohtani K, Kasai R, Yamasaki K. Nitrile glucosides and rosmarinic acid, the histamine inhibitor from Ehretia philippinensis. Phytochemistry 36: 91–95 (1994)

    Article  CAS  Google Scholar 

  16. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function, and inhibition. Biochem. J. 357: 593–615 (2001)

    Article  CAS  Google Scholar 

  17. Stadler K, Bonini MG, Dallas S, Jiang J, Radi R, Mason RP, Kadiiska MB. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocininduced diabetes. Free Radical Bio. Med. 45: 866–874 (2008)

    Article  CAS  Google Scholar 

  18. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J. Clin. Invest. 115: 1111–1119 (2005)

    CAS  Google Scholar 

  19. Baggiolini M. Chemokines and leukocyte traffic. Nature 392: 565–568 (1998)

    Article  CAS  Google Scholar 

  20. Morand EF, Leech M, Bernhagen J. MIF: A new cytokine link between rheumatoid arthritis and atherosclerosis. Nat. Rev. Drug Discov. 5: 399–411 (2006)

    Article  CAS  Google Scholar 

  21. Sohn KH, Lee HY, Chung HY, Young HS, Yi SY, Kim KW. Antiangiogenic activity of triterpene acids. Cancer Lett. 94: 213–218 (1995)

    Article  CAS  Google Scholar 

  22. Balanehru S, Nagarajan B. Protective effect of oleanolic acid and ursolic acid against lipid peroxidation. Biochem. Int. 24: 981–990 (1991)

    CAS  Google Scholar 

  23. Ovesna Z, Vachalkova A, Horvathova K, Tothova D. Pentacyclic triterpenoic acids: New chemoprotective compounds. Minirev. Neoplasma 51: 327–333 (2004)

    CAS  Google Scholar 

  24. Garcia-Mediavilla V, Crespo I, Collado PS, Esteller A, Sanchez-Campos S, Tunon MJ, Gonzalez-Gallego J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2, and reactive c-protein and down-regulation of the nuclear factor kappaB pathway in chang liver cells. Eur. J. Pharmacol. 557: 221–229 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Yun Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.D., Lee, Y.M., Kang, M.A. et al. Phytochemical profiles and in vitro anti-inflammatory properties of Perilla frutescens cv. Chookyoupjaso mutants induced by mutagenesis with γ-ray. Food Sci Biotechnol 19, 305–311 (2010). https://doi.org/10.1007/s10068-010-0044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0044-8

Keywords

Navigation