Skip to main content

Advertisement

Log in

Peripheral microcirculatory abnormalities are associated with cardiovascular risk in systemic sclerosis: a nailfold video capillaroscopy study

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Microvascular dysfunction is the key element in the pathogenesis of systemic sclerosis (SSc), whereas the contribution of large and medium size vessel abnormalities is yet to be established. The aim of the present study is to assess the association between micro- and macrovascular function by utilizing a broad spectrum of assessments of vascular performance.

Methods

We included consecutive, consenting SSc patients who underwent nailfold video capillaroscopy (NVC) for microcirculation evaluation. Peripheral and central systolic and diastolic blood pressure, carotid intima-media thickness (cIMT), aortic augmentation index (AIx) corrected for a heart rate of 75 beats per minute (AIx-75), and carotid-femoral pulse wave velocity (PWV) were also performed to assess macrovascular function. Cardiovascular risk disease (CVD) algorithms were also calculated and included in the analysis.

Results

A total of 81 patients (6 males) were studied with mean age 55.44 ± 13.40 years. Reduced capillary density was inversely correlated with arterial stiffness (Alx-75) and augmentation pressure (r =  − 0.262, p = 0.018, and r =  − 0.249, p = 0.025 respectively). Alx was significantly lower in the early compared to late pattern (28.24 ± 11.75 vs 35.63 ± 10.47, p = 0.036). A significant trend was found among NVC patterns with Alx-75 values being higher with the progression of microangiopathy towards the “late” group (26.36 ± 10.90 vs 30.81 ± 11.59 vs 35.21 ± 7.90, p = 0.027 for trend). Similarly, Framingham risk score and Atherosclerotic Cardiovascular Disease score were progressively higher across the worsening NVC patterns (4.10 ± 4.13 vs 2.99 ± 2.72 vs 6.36 ± 5.65, p = 0.023, and 6.99 ± 7.18 vs 5.63 ± 4.41 vs 12.09 ± 9.90, p = 0.019, respectively, for trends). Finally, QRISK3 (10-year cardiovascular disease risk) and ASCVD (Atherosclerotic Cardiovascular Disease) scores were inversely correlated with the number of capillaries (r =  − 0.231, p = 0.048, and r =  − 0.260, p = 0.038 respectively).

Conclusion

These data suggest that CVD risk scores and macrovascular parameters are strongly correlated with microvasculopathy in patients with SSc.

Key Points

• Microangiopathy is the hallmark of SSc, but the relationship between subclinical atherosclerosis and small vessel disease remains unknown.

• Arterial stiffening and CVD risk scores are positively associated with the degree of progression of peripheral microvasculopathy assessed with NVC.

• The results of the study suggest an association between NVC abnormalities and higher CVD risk in SSc patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Available on request.

Code availability

Available on request.

References

  1. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390(10103):1685–1699. https://doi.org/10.1016/s0140-6736(17)30933-9

    Article  PubMed  Google Scholar 

  2. Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT (2018) Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int 38(10):1847–1858. https://doi.org/10.1007/s00296-017-3826-y

    Article  PubMed  Google Scholar 

  3. Tyndall AJ, Bannert B, Vonk M et al (2010) Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 69(10):1809–1815. https://doi.org/10.1136/ard.2009.114264

    Article  PubMed  Google Scholar 

  4. Derk CT, Jimenez SA (2003) Systemic sclerosis: current views of its pathogenesis. Autoimmun Rev 2(4):181–191. https://doi.org/10.1016/s1568-9972(03)00005-3

    Article  CAS  PubMed  Google Scholar 

  5. Pagkopoulou E, Poutakidou M, Garyfallos A, Kitas G, Dimitroulas T (2017) Cardiovascular risk in systemic sclerosis: micro- and macro-vascular involvement. Indian Journal of Rheumatology 12(6):211–217. https://doi.org/10.4103/0973-3698.219080

    Article  Google Scholar 

  6. Frech T, Walker AE, Barrett-O’Keefe Z, Hopkins PN, Richardson RS, Wray DW, Donato AJ (2015) Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction. Clin Rheumatol 34(5):905–913. https://doi.org/10.1007/s10067-014-2834-5

    Article  PubMed  Google Scholar 

  7. Aviña-Zubieta JA, Man A, Yurkovich M, Huang K, Sayre EC, Choi HK (2016) Early cardiovascular disease after the diagnosis of systemic sclerosis. Am J Med 129(3):324–331. https://doi.org/10.1016/j.amjmed.2015.10.037

    Article  PubMed  Google Scholar 

  8. Piccione MC, Bagnato G, Zito C, Di Bella G, Caliri A, Catalano M, Longordo C, Oreto G, Bagnato G, Carerj S (2011) Early identification of vascular damage in patients with systemic sclerosis. Angiology 62(4):338–343. https://doi.org/10.1177/0003319710387918

    Article  PubMed  Google Scholar 

  9. Liu J, Zhang Y, Cao TS, Duan YY, Yuan LJ, Yang YL, Li Y, Yao L (2011) Preferential macrovasculopathy in systemic sclerosis detected by regional pulse wave velocity from wave intensity analysis: comparisons of local and regional arterial stiffness parameters in cases and controls. Arthritis Care Res (Hoboken) 63(4):579–587. https://doi.org/10.1002/acr.20306

    Article  Google Scholar 

  10. Au K, Singh MK, Bodukam V, Bae S, Maranian P, Ogawa R, Spiegel B, McMahon M, Hahn B, Khanna D (2011) Atherosclerosis in systemic sclerosis: a systematic review and meta-analysis. Arthritis Rheum 63(7):2078–2090. https://doi.org/10.1002/art.30380

    Article  PubMed  PubMed Central  Google Scholar 

  11. Panopoulos S, Tektonidou M, Drosos AA et al (2018) Prevalence of comorbidities in systemic sclerosis versus rheumatoid arthritis: a comparative, multicenter, matched-cohort study. Arthritis Res Ther 20(1):267. https://doi.org/10.1186/s13075-018-1771-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dimitroulas T, Baniotopoulos P, Pagkopoulou E, Soulaidopoulos S, Nightingale P, Sandoo A, Karagiannis A, Douglas K, Sachinidis A, Garyfallos A, Kitas G (2020) Subclinical atherosclerosis in systemic sclerosis and rheumatoid arthritis: a comparative matched-cohort study. Rheumatol Int 40(12):1997–2004. https://doi.org/10.1007/s00296-020-04677-3

    Article  PubMed  Google Scholar 

  13. Etehad Tavakol M, Fatemi A, Karbalaie A, Emrani Z, Erlandsson BE (2015) Nailfold capillaroscopy in rheumatic diseases: which parameters should be evaluated? Biomed Res Int 2015:974530. https://doi.org/10.1155/2015/974530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernardino V, Rodrigues A, Lladó A, Panarra A (2020) Nailfold capillaroscopy and autoimmune connective tissue diseases in patients from a Portuguese nailfold capillaroscopy clinic. Rheumatol Int 40(2):295–301. https://doi.org/10.1007/s00296-019-04427-0

    Article  PubMed  Google Scholar 

  15. van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72(11):1747–1755. https://doi.org/10.1136/annrheumdis-2013-204424

    Article  PubMed  Google Scholar 

  16. Maricq HR, LeRoy EC (1973) Patterns of finger capillary abnormalities in connective tissue disease by “wide-field” microscopy. Arthritis Rheum 16(5):619–628. https://doi.org/10.1002/art.1780160506

    Article  CAS  PubMed  Google Scholar 

  17. Soulaidopoulos S, Triantafyllidou E, Garyfallos A, Kitas GD, Dimitroulas T (2017) The role of nailfold capillaroscopy in the assessment of internal organ involvement in systemic sclerosis: a critical review. Autoimmun Rev 16(8):787–795. https://doi.org/10.1016/j.autrev.2017.05.019

    Article  PubMed  Google Scholar 

  18. Rollando D, Bezante GP, Sulli A, Balbi M, Panico N, Pizzorni C, Negrini S, Brunelli C, Barsotti A, Cutolo M, Indiveri F, Ghio M (2010) Brachial artery endothelial-dependent flow-mediated dilation identifies early-stage endothelial dysfunction in systemic sclerosis and correlates with nailfold microvascular impairment. J Rheumatol 37(6):1168–1173. https://doi.org/10.3899/jrheum.091116

    Article  PubMed  Google Scholar 

  19. Jung KH, Lim MJ, Kwon SR, Kim D, Joo K, Park W (2015) Nailfold capillary microscopic changes and arterial stiffness in Korean systemic sclerosis patients. Mod Rheumatol 25(2):328–331. https://doi.org/10.3109/14397595.2014.881955

    Article  PubMed  Google Scholar 

  20. Soulaidopoulos S, Pagkopoulou E, Katsiki N, Triantafyllidou E, Karagiannis A, Garyfallos A, Kitas GD, Dimitroulas T (2019) Arterial stiffness correlates with progressive nailfold capillary microscopic changes in systemic sclerosis: results from a cross-sectional study. Arthritis Res Ther 21(1):253. https://doi.org/10.1186/s13075-019-2051-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colaci M, Dal Bosco Y, Schinocca C, Ronsivalle G, Guggino G, De Andres I, Russo AA, Sambataro D, Sambataro G, Malatino L (2020) Aortic root dilation in associated with the reduction in capillary density observed at nailfold capillaroscopy in SSc patients. Clin Rheumatol. https://doi.org/10.1007/s10067-020-05201-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753. https://doi.org/10.1161/circulationaha.107.699579

    Article  PubMed  Google Scholar 

  23. Hippisley-Cox J, Coupland C, Brindle P (2017) Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357:j2099. https://doi.org/10.1136/bmj.j2099

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goff DC Jr, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(25 Suppl 2):S49-73. https://doi.org/10.1161/01.cir.0000437741.48606.98

    Article  PubMed  Google Scholar 

  25. Williams B, Mancia G, Spiering W et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36(10):1953–2041. https://doi.org/10.1097/hjh.0000000000001940

    Article  CAS  PubMed  Google Scholar 

  26. Frech TM, Penrod J, Battistone MJ, Sawitzke AD, Stults BM (2012) The prevalence and clinical correlates of an auscultatory gap in systemic sclerosis patients. Int J Rheumatol 2012:590845. https://doi.org/10.1155/2012/590845

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saito K, Hishiki Y, Takahashi H (2020) Validation of the Omron HBP-1320 for professional use according to the ANSI/AAMI/ISO 81060–2: 2013 protocol and the 2010 revision of the European Society of Hypertension International Protocol. Blood Press Monit 25(3):162–166. https://doi.org/10.1097/mbp.0000000000000437

    Article  PubMed  Google Scholar 

  28. Cutolo M, Sulli A, Smith V (2010) Assessing microvascular changes in systemic sclerosis diagnosis and management. Nat Rev Rheumatol 6(10):578–587. https://doi.org/10.1038/nrrheum.2010.104

    Article  PubMed  Google Scholar 

  29. Cutolo M, Sulli A, Pizzorni C, Accardo S (2000) Nailfold videocapillaroscopy assessment of microvascular damage in systemic sclerosis. J Rheumatol 27(1):155–160

    CAS  PubMed  Google Scholar 

  30. Smith V, Vanhaecke A, Herrick AL et al (2019) Fast track algorithm: how to differentiate a “scleroderma pattern” from a “non-scleroderma pattern.” Autoimmun Rev 18(11):102394. https://doi.org/10.1016/j.autrev.2019.102394

    Article  PubMed  Google Scholar 

  31. Caramaschi P, Canestrini S, Martinelli N, Volpe A, Pieropan S, Ferrari M, Bambara LM, Carletto A, Biasi D (2007) Scleroderma patients nailfold videocapillaroscopic patterns are associated with disease subset and disease severity. Rheumatology (Oxford) 46(10):1566–1569. https://doi.org/10.1093/rheumatology/kem190

    Article  CAS  Google Scholar 

  32. Hofstee HM, Serné EH, Roberts C, Hesselstrand R, Scheja A, Moore TL, Wildt M, Manning JB, Vonk Noordegraaf A, Voskuyl AE, Herrick AL (2012) A multicentre study on the reliability of qualitative and quantitative nail-fold videocapillaroscopy assessment. Rheumatology (Oxford) 51(4):749–755. https://doi.org/10.1093/rheumatology/ker403

    Article  Google Scholar 

  33. Roman MJ, Naqvi TZ, Gardin JM, Gerhard-Herman M, Jaff M, Mohler E (2006) Clinical application of noninvasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. J Am Soc Echocardiogr 19(8):943–954. https://doi.org/10.1016/j.echo.2006.04.020

    Article  PubMed  Google Scholar 

  34. DeLoach SS, Townsend RR (2008) Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol 3(1):184–192. https://doi.org/10.2215/cjn.03340807

    Article  PubMed  Google Scholar 

  35. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, Heffernan KS, Lakatta EG, McEniery CM, Mitchell GF, Najjar SS, Nichols WW, Urbina EM, Weber T (2015) Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 66(3):698–722. https://doi.org/10.1161/hyp.0000000000000033

    Article  CAS  PubMed  Google Scholar 

  36. Dimitroulas T, Giannakoulas G, Karvounis H, Garyfallos A, Settas L, Kitas GD (2014) Micro- and macrovascular treatment targets in scleroderma heart disease. Curr Pharm Des 20(4):536–544. https://doi.org/10.2174/13816128113199990555

    Article  CAS  PubMed  Google Scholar 

  37. Kavian N, Batteux F (2015) Macro- and microvascular disease in systemic sclerosis. Vascul Pharmacol 71:16–23. https://doi.org/10.1016/j.vph.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  38. Zanatta E, Famoso G, Boscain F, Montisci R, Pigatto E, Polito P, Schiavon F, Iliceto S, Cozzi F, Doria A, Tona F (2019) Nailfold avascular score and coronary microvascular dysfunction in systemic sclerosis: a newsworthy association. Autoimmun Rev 18(2):177–183. https://doi.org/10.1016/j.autrev.2018.09.002

    Article  PubMed  Google Scholar 

  39. Rosato E, Gigante A, Barbano B, Cianci R, Molinaro I, Pisarri S, Salsano F (2011) In systemic sclerosis macrovascular damage of hands digital arteries correlates with microvascular damage. Microvasc Res 82(3):410–415. https://doi.org/10.1016/j.mvr.2011.07.009

    Article  PubMed  Google Scholar 

  40. Ruaro B, Sulli A, Alessandri E, Pizzorni C, Ferrari G, Cutolo M (2014) Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients. Ann Rheum Dis 73(6):1181–1185. https://doi.org/10.1136/annrheumdis-2013-203514

    Article  PubMed  Google Scholar 

  41. Bartoloni E, Pucci G, Cannarile F, Battista F, Alunno A, Giuliani M, Cafaro G, Gerli R, Schillaci G (2016) Central hemodynamics and arterial stiffness in systemic sclerosis. Hypertension 68(6):1504–1511. https://doi.org/10.1161/hypertensionaha.116.08345

    Article  CAS  PubMed  Google Scholar 

  42. Cypiene A, Laucevicius A, Venalis A, Dadoniene J, Ryliskyte L, Petrulioniene Z, Kovaite M, Gintautas J (2008) The impact of systemic sclerosis on arterial wall stiffness parameters and endothelial function. Clin Rheumatol 27(12):1517–1522. https://doi.org/10.1007/s10067-008-0958-1

    Article  PubMed  Google Scholar 

  43. Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Bertacchini F, Stassaldi D, Gavazzi A, Porteri E, De Ciuceis C, Agabiti-Rosei E (2013) Pulsatile hemodynamics and microcirculation: evidence for a close relationship in hypertensive patients. Hypertension 61(1):130–136. https://doi.org/10.1161/hypertensionaha.111.00006

    Article  CAS  PubMed  Google Scholar 

  44. van Sloten TT, Czernichow S, Houben AJ et al (2015) Association between arterial stiffness and skin microvascular function: the SUVIMAX2 Study and The Maastricht Study. Am J Hypertens 28(7):868–876. https://doi.org/10.1093/ajh/hpu246

    Article  PubMed  Google Scholar 

  45. Schoina M, Loutradis C, Theodorakopoulou M, Dimitroulas T, Triantafillidou E, Doumas M, Karagiannis A, Garyfallos A, Papagianni A, Sarafidis P (2021) The presence of diabetes mellitus further impairs structural and functional capillary density in patients with chronic kidney disease. Microcirculation 28(2):e12665. https://doi.org/10.1111/micc.12665

    Article  CAS  PubMed  Google Scholar 

  46. Dalbeni A, Ciccarese C, Bevilacqua M et al (2018) Effects of antiangiogenetic drugs on microcirculation and macrocirculation in patients with advanced-stage renal cancer. Cancers (Basel) 11(1):30. https://doi.org/10.3390/cancers11010030

    Article  CAS  Google Scholar 

  47. Arvanitaki A, Giannakoulas G, Triantafyllidou E, Feloukidis C, Boutou AK, Garyfallos A, Karvounis H, Dimitroulas T (2021) Peripheral microangiopathy in precapillary pulmonary hypertension: a nailfold video capillaroscopy prospective study. Respir Res 22(1):27. https://doi.org/10.1186/s12931-021-01622-1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arvanitaki A, Giannakoulas G, Triantafyllidou E, Karvounis H, Dimitroulas T (2020) Peripheral microangiopathy in patients with precapillary pulmonary hypertension: correlation with cardiac function and patients’ functional capacity. Study Design and Rationale. Mediterr J Rheumatol 31(3):369–373. https://doi.org/10.31138/mjr.31.3.369

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lisco G, Cicco G, Cignarelli A, Garruti G, Laviola L, Giorgino F (2018) Computerized video-capillaroscopy alteration related to diabetes mellitus and its complications. Adv Exp Med Biol 1072:363–368. https://doi.org/10.1007/978-3-319-91287-5_58

    Article  CAS  PubMed  Google Scholar 

  50. Lambova S, Müller-Ladner U (2013) Capillaroscopic pattern in paraneoplastic Raynaud’s phenomenon. Rheumatol Int 33(6):1597–1599. https://doi.org/10.1007/s00296-010-1715-8

    Article  CAS  PubMed  Google Scholar 

  51. Wibetoe G, Sexton J, Ikdahl E et al (2020) Prediction of cardiovascular events in rheumatoid arthritis using risk age calculations: evaluation of concordance across risk age models. Arthritis Res Ther 22(1):90. https://doi.org/10.1186/s13075-020-02178-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ozen G, Inanc N, Unal AU, Korkmaz F, Sunbul M, Ozmen M, Akar S, Deniz R, Donmez S, Pamuk ON, Atagunduz P, Tigen K, Direskeneli H (2016) Subclinical atherosclerosis in systemic sclerosis: not less frequent than rheumatoid arthritis and not detected with cardiovascular risk indices. Arthritis Care Res (Hoboken) 68(10):1538–1546. https://doi.org/10.1002/acr.22852

    Article  Google Scholar 

  53. Smith V, Herrick AL, Ingegnoli F et al (2020) Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud’s phenomenon and systemic sclerosis. Autoimmun Rev 19(3):102458. https://doi.org/10.1016/j.autrev.2020.102458

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Dimitroulas.

Ethics declarations

Ethics approval

Ethics approval provided by Hippokration Hospital.

Consent to participate

All participants gave their written informed consent according to the Declaration of Helsinki.

Consent for publication

The authors have consented to the publication of the paper.

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagkopoulou, E., Soulaidopoulos, S., Triantafyllidou, E. et al. Peripheral microcirculatory abnormalities are associated with cardiovascular risk in systemic sclerosis: a nailfold video capillaroscopy study. Clin Rheumatol 40, 4957–4968 (2021). https://doi.org/10.1007/s10067-021-05795-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05795-4

Keywords

Navigation