Skip to main content

Advertisement

Log in

Plasma miRNAs improve the prediction of coronary atherosclerosis in patients with rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

MicroRNAs (miRNAs) regulate gene expression and are disease biomarkers. Rheumatoid arthritis (RA) patients have accelerated atherosclerosis leading to excess cardiovascular morbidity and mortality, but traditional risk factors for cardiovascular risk stratification are inadequate. In the general population, miRNAs improve cardiovascular risk estimation beyond traditional risk factors. Our objective was to develop a miRNA panel that predicts coronary atherosclerosis in RA patients.

Methods

Plasma small RNA next-generation sequencing (NGS) was performed on 161 RA patients whose Agatston scores for coronary artery calcium were previously measured. Random forest analysis of plasma NGS miRNA expression was used to determine which miRNAs best differentiated between those patients with and without coronary artery calcium. Top predictive miRNAs were assayed by quantitative PCR (qPCR). Elastic net regression was used to develop the most parsimonious models with qPCR-measured miRNA concentrations and clinical variables (age, sex, ACC/AHA 10-year risk score, DAS28 score, and diabetes) separately to predict the presence of coronary artery calcium and high coronary artery calcium. C-statistics were used to assess performance model performance.

Results

The top miRNAs which differentiated those with and without coronary atherosclerosis based on random forest analysis included let-7c-5p, miR-30e-5p, miR-30c-5p, miR-4446-3p, miR-126-5p, miR-3168, miR-425-5p, miR-126-3p, miR-30a-5p, and miR-125a-5p. For coronary artery calcium prediction, addition of all miRNAs except miR-126-3p to clinical factors improved the c-statistic modestly from 0.86 to 0.87. For high coronary artery calcium prediction, addition of all miRNAs except miR-30c-5p to clinical factors improved the c-statistic from 0.75 to 0.80.

Conclusion

A plasma miRNA panel improved the prediction of high coronary artery calcium beyond traditional risk factors and RA disease activity. Further evaluation of the miRNA panel for prediction of coronary events in RA is necessary.

Key Point

• A plasma microRNA panel including let-7c-5p, miR-30a-5p, miR-30e-5p, miR-125a-5p, miR-126-3p, miR-126-5p, miR-425-5p, miR-3168, and miR-4446-3p improved the prediction of high coronary artery calcium beyond clinical factors in patients with rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  2. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  Google Scholar 

  3. Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357

    Article  CAS  Google Scholar 

  4. Dickman CT, Lawson J, Jabalee J, MacLellan SA, LePard NE, Bennewith KL et al (2017) Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget 8:15252–15266

    Article  Google Scholar 

  5. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  Google Scholar 

  6. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 108:5003–5008

    Article  CAS  Google Scholar 

  7. Matias-Garcia PR, Wilson R, Mussack V, Reischl E, Waldenberger M, Gieger C et al (2020) Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PloS one 15:e0227648

    Article  CAS  Google Scholar 

  8. Chung CP, Oeser A, Raggi P, Gebretsadik T, Shintani AK, Sokka T et al (2005) Increased coronary-artery atherosclerosis in rheumatoid arthritis: relationship to disease duration and cardiovascular risk factors. Arthritis Rheum 52:3045–3053

    Article  Google Scholar 

  9. Crowson CS, Gabriel SE, Semb AG, van Riel P, Karpouzas G, Dessein PH et al (2017) Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries. Rheumatology (Oxford) 56:1102–1110

    Article  CAS  Google Scholar 

  10. Ormseth MJ, Solus JF, Sheng Q, Ye F, Wu Q, Guo Y et al (2020) Development and validation of a microRNA panel to differentiate between patients with rheumatoid arthritis or systemic lupus erythematosus and controls. J Rheumatol 47:188–196

    Article  CAS  Google Scholar 

  11. Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H et al (2010) Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 12:R86

    Article  Google Scholar 

  12. Condorelli G, Latronico MV, Cavarretta E (2014) microRNAs in cardiovascular diseases. current knowledge and the road ahead. J Am Coll Cardiol 63:2177–2187

    Article  CAS  Google Scholar 

  13. Barwari T, Joshi A, Mayr M (2016) MicroRNAs in cardiovascular disease. J Am Coll Cardiol 68:2577–2584

    Article  CAS  Google Scholar 

  14. Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V (2019) How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30:114–127

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ormseth MJ, Solus JF, Vickers KC, Oeser AM, Raggi P, Stein CM (2015) Utility of select plasma microRNA for disease and cardiovascular risk assessment in patients with rheumatoid arthritis. J Rheumatol 42:1746–1751

    Article  CAS  Google Scholar 

  16. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  CAS  Google Scholar 

  17. Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    Article  CAS  Google Scholar 

  18. Rho YH, Solus J, Sokka T, Oeser A, Chung CP, Gebretsadik T, Shintani A, Pincus T, Stein CM (2009) Adipocytokines are associated with radiographic joint damage in rheumatoid arthritis. Arthritis Rheum 60:1906–1914

    Article  CAS  Google Scholar 

  19. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  Google Scholar 

  20. Goff DC, Jr., Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Sr., Gibbons R, et al. (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(25 Pt B):2935-59.

  21. Allen RM, Zhao S, Ramirez Solano MA, Zhu W, Michell DL, Wang Y et al (2018) Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J Extracell Vesicles 7:1506198

    Article  CAS  Google Scholar 

  22. Ormseth MJ, Solus JF, Sheng Q, Ye F, Song H, Wu Q et al (2020) The endogenous plasma small RNAome of rheumatoid arthritis. ACR Open Rheumatol 2:97–105

    Article  Google Scholar 

  23. Wilson PW, Pencina M, Jacques P, Selhub J, D'Agostino R Sr, O'Donnell CJ (2008) C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ Cardiovasc Qual Outcomes 1:92–97

    Article  Google Scholar 

  24. Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijck W, van Rooij FJ et al (2005) Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 112:572–577

    Article  Google Scholar 

  25. Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE (2018) Coronary calcium score and cardiovascular risk. J Am Coll Cardiol 72:434–447

    Article  CAS  Google Scholar 

  26. Soifer HS, Rossi JJ, Saetrom P (2005) MicroRNAs in disease and potential therapeutic applications. Mol Ther 15:2070–2079

    Article  Google Scholar 

  27. Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA (2018) Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics. Am J Hypertens 31:150–165

    Article  CAS  Google Scholar 

  28. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521

    Article  CAS  Google Scholar 

  29. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20:368-76.

  30. Boon RA, Dimmeler S (2014) MicroRNA-126 in atherosclerosis. Arterioscler Thromb Vasc Biol 34:e15–e16

    Article  CAS  Google Scholar 

  31. Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C (2020) Role of microRNAs in the development of cardiovascular disease in systemic autoimmune disorders. Int J Mol Sci 21:2012

    Article  CAS  Google Scholar 

  32. Balderman JA, Lee HY, Mahoney CE, Handy DE, White K, Annis S et al (2012) Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc 1:e003905

    Article  Google Scholar 

  33. Bidzhekov K, Gan L, Denecke B, Rostalsky A, Hristov M, Koeppel TA et al (2012) microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thromb Haemost 107:619–625

    Article  CAS  Google Scholar 

  34. Kim BG, Kang S, Han HH, Lee JH, Kim JE, Lee SH et al (2016) Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget 7:27468–27478

    Article  Google Scholar 

  35. Heo KS, Fujiwara K, Abe J (2014) Shear stress and atherosclerosis. Mol Cells 37:435–440

    Article  Google Scholar 

  36. McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG (2015) T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523:612–616

    Article  CAS  Google Scholar 

  37. Liu J, Huang GQ, Ke ZP (2019) Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox-LDL-treated human macrophages by upregulating miR-330-5p. J Cell Physiol 234:5134–5142

    Article  CAS  Google Scholar 

  38. Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y et al (2016) Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 112:714–724

    Article  CAS  Google Scholar 

  39. Avazpour N, Hajjari M, Yazdankhah S, Sahni A, Foroughmand AM (2018) Circulating HOTAIR RNA is potentially up-regulated in coronary artery disease. Genomics Inform 16:e25

    Article  Google Scholar 

  40. Onat UI, Yildirim AD, Tufanli O, Cimen I, Kocaturk B, Veli Z et al (2019) Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J Am Coll Cardiol 73:1149–1169

    Article  CAS  Google Scholar 

  41. Wek RC, Jiang HY, Anthony TG. (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7-11.

Download references

Funding

Veterans Health Administration CDA IK2CX001269, Arthritis Foundation Delivering on Discovery grant, Alpha Omicron Pi, NIH Grants: P01HL116263, and CTSA award UL1TR000445 from the National Center for Advancing Translational Sciences. The contents of this study are solely the responsibility of the authors and do not necessarily represent the official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle J. Ormseth.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ormseth, M.J., Solus, J.F., Sheng, Q. et al. Plasma miRNAs improve the prediction of coronary atherosclerosis in patients with rheumatoid arthritis. Clin Rheumatol 40, 2211–2219 (2021). https://doi.org/10.1007/s10067-020-05573-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05573-8

Keywords

Navigation