Skip to main content

Advertisement

Log in

Autoantibodies against myelin sheath and S100β are associated with cognitive dysfunction in patients with rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) has been associated with cognitive impairment and peripheral production of autoantibodies. Autoantibodies against central nervous system (CNS) proteins and S100 calcium-binding β (S100β) were found increased in diseases characterized by cognitive impairment like Alzheimer disease and Neuropsychiatric Systemic Lupus Erythematosus (NPSLE). The aim of this study was to investigate the plasma levels of autoantibodies against myelin basic protein (anti-MBP), myelin oligodendrocyte glycoprotein (anti-MOG) and S100β, and their relationships with cognitive performance in RA patients. Twenty patients with active rheumatoid arthritis and 19 age-, sex-, and schooling-matched healthy controls were recruited. Multiple dimensions of cognitive function were evaluated by structured clinical questionnaires. Autoantibodies and S100β levels were assessed by ELISAs. Patients had significantly higher levels of anti-MBP IgG (17.51 ± 1.36 vs. 5.24 ± 0.53 ng/mL), anti-MOG IgG (5.68 ± 1.34 vs. 0.51 ± 0.49 ng/mL), and S100β protein (2.24 ± 0.50 vs. 0.47 ± 0.06) than controls (all p < 0.0001). After adjusting for potential confounders, RA group presented worse cognitive performance involving the working memory and executive functions such as inhibition, flexibility, and mental control in parallel to higher autoantibodies and S100β levels than healthy controls (all p < 0.001). Levels of anti-MBP were negatively associated with delayed verbal recall (DVR; r = −0.42, p = 0.005), Stroop Color-Word (r = −0.48, p = 0.004), and N-Back Total scores (r = −0.59, p < 0.0001) and positively with Trail Making Test B (TMB, r = 0.53, p = 0.001). Negative correlation was found between levels of anti-MOG and DVR (r = −0.64, p < 0.0001), N-Back Total scores (r = −0.35, p = 0.03), Stroop Color-Word (r = −0.51, p = 0.001), and positively with TMB (r = 0.50, p = 0.003). S100β levels were associated with DVR (r = −0.51, p = 0.002), TMB (r = 0.46, p = 0.008), Stroop Color-Word (r = −0.67, p < 0.0001), and N-Back Total (r = −0.52, p = 0.003). RA is associated with impaired cognitive performance associated with higher levels of CNS-related autoantibodies and S100β levels. Given the importance of myelin integrity to cognition, our data indicate that these autoantibodies may be harmful to proper cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Turesson C, Mathsson L, Jacobsson LT, Sturfelt G, Ronnelid J (2013) Antibodies to modified citrullinated vimentin are associated with severe extra-articular manifestations in rheumatoid arthritis. Ann Rheum Dis 72(12):2047–2048

    Article  PubMed  Google Scholar 

  2. Prete M, Racanelli V, Digiglio L, Vacca A, Dammacco F, Perosa F (2011) Extra-articular manifestations of rheumatoid arthritis: an update. Autoimmun Rev 11(2):123–131

    Article  PubMed  Google Scholar 

  3. Bartolini M, Candela M, Brugni M, Catena L, Mari F, Pomponio G et al (2002) Are behaviour and motor performances of rheumatoid arthritis patients influenced by subclinical cognitive impairments? A clinical and neuroimaging study. Clin Exp Rheumatol 20(4):491–497

    CAS  PubMed  Google Scholar 

  4. Hamed SA, Selim ZI, Elattar AM, Elserogy YM, Ahmed EA, Mohamed HO (2012) Assessment of biocorrelates for brain involvement in female patients with rheumatoid arthritis. Clin Rheumatol 31(1):123–132

    Article  PubMed  Google Scholar 

  5. Massardo L, Bravo-Zehnder M, Calderon J, Flores P, Padilla O, Aguirre JM et al (2015) Anti-N-methyl-D-aspartate receptor and anti-ribosomal-P autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus. Lupus 24(6):558–568

    Article  CAS  PubMed  Google Scholar 

  6. Di Domenico F, Pupo G, Giraldo E, Lloret A, Badia MC, Schinina ME et al (2016) Autoantibodies profile in matching CSF and serum from AD and aMCI patients: potential pathogenic role and link to oxidative damage. Curr Alzheimer Res 13(2):112–122

    Article  PubMed  Google Scholar 

  7. Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18(2):117–123

    Article  CAS  PubMed  Google Scholar 

  8. Nishioku T, Furusho K, Tomita A, Ohishi H, Dohgu S, Shuto H et al (2011) Potential role for S100A4 in the disruption of the blood-brain barrier in collagen-induced arthritic mice, an animal model of rheumatoid arthritis. Neuroscience 189:286–292

    Article  CAS  PubMed  Google Scholar 

  9. Bargerstock E, Puvenna V, Iffland P, Falcone T, Hossain M, Vetter S et al (2014) Is peripheral immunity regulated by blood-brain barrier permeability changes? PLoS One 9(7):e101477

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang XY, Lin J, Lu XY, Zhao XY (2008) Expression of S100B protein levels in serum and cerebrospinal fluid with different forms of neuropsychiatric systemic lupus erythematosus. Clin Rheumatol 27(3):353–357

    Article  PubMed  Google Scholar 

  11. Gruden MA, Davidova TB, Malisauskas M, Sewell RD, Voskresenskaya NI, Wilhelm K et al (2007) Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: autoantibodies to Abeta((25-35)) oligomers, S100b and neurotransmitters. J Neuroimmunol 186(1–2):181–192

    Article  CAS  PubMed  Google Scholar 

  12. Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, et al (2015) S100B as a Potential Biomarker and Therapeutic Target in Multiple Sclerosis. Mol Neurobiol

  13. Anderson J, Caplan L, Yazdany J, Robbins ML, Neogi T, Michaud K et al (2012) Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice. Arthritis Care Res (Hoboken) 64(5):640–647

    Article  Google Scholar 

  14. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324

    Article  CAS  PubMed  Google Scholar 

  15. Beck AT, Steer RA, Ball R, Ranieri W (1996) Comparison of Beck depression inventories-IA and -II in psychiatric outpatients. J Pers Assess 67(3):588–597

    Article  CAS  PubMed  Google Scholar 

  16. Folstein MF, Folstein SE, McHugh PR (1975) "mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  17. Wechsler D (1987) WMS-R: Wechsler Memory Scale-Revised: Manual: Harcourt Brace Jovanovich

  18. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25(1):46–59

    Article  PubMed  Google Scholar 

  19. Lezak MD (1995) Neuropsychological assessment. Oxford University Press, USA

    Google Scholar 

  20. Guise BJ, Thompson MD, Greve KW, Bianchini KJ, West L (2014) Assessment of performance validity in the Stroop color and word test in mild traumatic brain injury patients: a criterion-groups validation design. J Neuropsychol 8(1):20–33

    Article  PubMed  Google Scholar 

  21. Arbour N, Holz A, Sipe JC, Naniche D, Romine JS, Zyroff J et al (2003) A new approach for evaluating antigen-specific T cell responses to myelin antigens during the course of multiple sclerosis. J Neuroimmunol 137(1–2):197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63(17):1945–1961

    Article  CAS  PubMed  Google Scholar 

  23. Terao C, Ohmura K, Katayama M, Takahashi M, Kokubo M, Diop G et al (2011) Myelin basic protein as a novel genetic risk factor in rheumatoid arthritis--a genome-wide study combined with immunological analyses. PLoS One 6(6):e20457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Girolamo F, Ferrara G, Strippoli M, Rizzi M, Errede M, Trojano M et al (2011) Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiol Dis 43(3):678–689

    Article  CAS  PubMed  Google Scholar 

  25. Papuc E, Kurys-Denis E, Krupski W, Tatara M, Rejdak K (2015) Can antibodies against glial derived antigens be early biomarkers of hippocampal demyelination and memory loss in Alzheimer's disease? J Alzheimers Dis 48(1):115–121

    Article  CAS  PubMed  Google Scholar 

  26. Sun X, Wang X, Chen T, Li T, Cao K, Lu A et al (2010) Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 5(2):e9380

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K et al (2011) Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 8:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kezuka T, Usui Y, Yamakawa N, Matsunaga Y, Matsuda R, Masuda M et al (2012) Relationship between NMO-antibody and anti-MOG antibody in optic neuritis. J Neuroophthalmol 32(2):107–110

    Article  PubMed  Google Scholar 

  29. Doronin VB, Parkhomenko TA, Castellazzi M, Padroni M, Pastore M, Buneva VN et al (2014) Comparison of antibodies hydrolyzing myelin basic protein from the cerebrospinal fluid and serum of patients with multiple sclerosis. PLoS One 9(9):e107807

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pozsgay J, Babos F, Uray K, Magyar A, Gyulai G, Kiss E et al (2016) In vitro eradication of citrullinated protein specific B-lymphocytes of rheumatoid arthritis patients by targeted bifunctional nanoparticles. Arthritis Res Ther 18(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  31. Magalhaes R, Stiehl P, Morawietz L, Berek C, Krenn V (2002) Morphological and molecular pathology of the B cell response in synovitis of rheumatoid arthritis. Virchows Arch 441(5):415–427

    Article  CAS  PubMed  Google Scholar 

  32. Domiciano DS, Carvalho JF, Shoenfeld Y (2009) Pathogenic role of anti-endothelial cell antibodies in autoimmune rheumatic diseases. Lupus 18(13):1233–1238

    Article  CAS  PubMed  Google Scholar 

  33. Perry E, Kelly C, Eggleton P, De Soyza A, Hutchinson D (2014) The lung in ACPA-positive rheumatoid arthritis: an initiating site of injury? Rheumatology (Oxford) 53(11):1940–1950

    Article  CAS  Google Scholar 

  34. Diamond B, Honig G, Mader S, Brimberg L, Volpe BT (2013) Brain-reactive antibodies and disease. Annu Rev Immunol 31:345–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobs AH, Tavitian B (2012) Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32(7):1393–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishioku T, Yamauchi A, Takata F, Watanabe T, Furusho K, Shuto H et al (2010) Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci Lett 482(3):208–211

    Article  CAS  PubMed  Google Scholar 

  37. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ et al (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartosik-Psujek H, Psujek M, Jaworski J, Stelmasiak Z (2011) Total tau and S100b proteins in different types of multiple sclerosis and during immunosuppressive treatment with mitoxantrone. Acta Neurol Scand 123(4):252–256

    Article  CAS  PubMed  Google Scholar 

  39. Tomassini V, De Giglio L, Reindl M, Russo P, Pestalozza I, Pantano P et al (2007) Anti-myelin antibodies predict the clinical outcome after a first episode suggestive of MS. Mult Scler 13(9):1086–1094

    Article  CAS  PubMed  Google Scholar 

  40. Lu PH, Lee GJ, Tishler TA, Meghpara M, Thompson PM, Bartzokis G (2013) Myelin breakdown mediates age-related slowing in cognitive processing speed in healthy elderly men. Brain Cogn 81(1):131–138

    Article  PubMed  Google Scholar 

  41. Bartzokis G (2005) Brain myelination in prevalent neuropsychiatric developmental disorders: primary and comorbid addiction. Adolesc Psychiatry 29:55–96

    PubMed  PubMed Central  Google Scholar 

  42. Maetzler W, Berg D, Synofzik M, Brockmann K, Godau J, Melms A et al (2011) Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of Lewy body-associated dementias. J Alzheimers Dis 26(1):171–179

    CAS  PubMed  Google Scholar 

  43. Coltman R, Spain A, Tsenkina Y, Fowler JH, Smith J, Scullion G et al (2011) Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol Aging 32(12):2324 e7-12

    Article  PubMed  Google Scholar 

  44. Gonzalez-Gronow M, Cuchacovich M, Francos R, Cuchacovich S, Blanco A, Sandoval R et al (2015) Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. J Neuroimmunol 287:1–8

    Article  CAS  PubMed  Google Scholar 

  45. Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A, Peters DG et al (2010) Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 31(9):1554–1562

    Article  CAS  PubMed  Google Scholar 

  46. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol Aging 25(1):5–18 author reply 49-62

    Article  CAS  PubMed  Google Scholar 

  47. Appenzeller S, Bertolo MB, Costallat LT (2004) Cognitive impairment in rheumatoid arthritis. Methods Find Exp Clin Pharmacol 26(5):339–343

    Article  CAS  PubMed  Google Scholar 

  48. Shin SY, Katz P, Wallhagen M, Julian L (2012) Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res (Hoboken). 64(8):1144–1150

    PubMed  PubMed Central  Google Scholar 

  49. Sochocka M, Diniz BS, Leszek J (2016) Inflammatory response in the CNS: friend or foe? Mol Neurobiol

  50. Iaquinta M, McCrone S (2015) An integrative review of correlates and predictors of depression in patients with rheumatoid arthritis. Arch Psychiatr Nurs 29(5):265–278

    Article  PubMed  Google Scholar 

  51. Coluccia D, Wolf OT, Kollias S, Roozendaal B, Forster A, de Quervain DJ (2008) Glucocorticoid therapy-induced memory deficits: acute versus chronic effects. J Neurosci 28(13):3474–3478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FAPERGS, CAPES, and CNPq. The funding institutions had no further roles in study design, in the collection, analysis, and interpretation of data, in the writing of the report, and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Evandro Bauer.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baptista, T.S.A., Petersen, L.E., Molina, J.K. et al. Autoantibodies against myelin sheath and S100β are associated with cognitive dysfunction in patients with rheumatoid arthritis. Clin Rheumatol 36, 1959–1968 (2017). https://doi.org/10.1007/s10067-017-3724-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3724-4

Keywords

Navigation