Skip to main content

Advertisement

Log in

BLK pathway-associated rs13277113 GA genotype is more frequent in SLE patients and associated with low gene expression and increased flares

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

We aimed to evaluate the relationship between some important genetic variations and expressions of these genes in our SLE population. We also determined their association with clinical parameters. Eighty-four SLE patients (79 F, 5 M) and 105 healthy controls (98 F, 7 M) were included in the study. rs13277113, rs2736340, rs7829816, rs6983130, rs2613310, and rs704853 polymorphisms, gene expressions of Src family kinases (Blk, Hck, Lck, and Lyn), and Syk kinases (Syk, ZAP70) were studied by real-time PCR. The heterozygous genotypic pattern (GA) for rs13277113 polymorphism was more frequent in patients with SLE when compared to that in controls (48.8 vs. 31.4%, p = 0.035). Other genotype variants were similar in SLE patients and controls. In the SLE group, the heterozygous genotype for rs13277113 was significantly less frequent in active SLE patients (58.8 vs. 26.7%, p = 0.01). SLE flares according to the SELENA-SLEDAI flare index were significantly more frequent in GA (rs13277113) (70 vs. 37%) and CT (rs2736340) genotypes (66.7 vs. 35.2%) than those in other genotypes (p values <0.01). The relative expression of Blk gene was significantly decreased in the SLE group as compared to that in controls (0.52 times, 95%CI 0.19–0.85). The gene expressions of Blk and ZAP70 were significantly lower in SLE patients who had flares according to the SELENA-SLEDAI flare index when compared to those in others (p values 0.01 and 0.017). We observed more frequent heterozygous GA genotypic pattern (rs13277113) in our SLE patients compared to that in controls; and it was associated with disease flares. Blk gene expression in SLE was lower, especially in relapsing patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  CAS  PubMed  Google Scholar 

  2. Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33

    Article  CAS  PubMed  Google Scholar 

  3. Deng Y, Tsao BP (2014) Advances in lupus genetics and epigenetics. Curr Opin Rheumatol 26:482–492

    Article  PubMed  PubMed Central  Google Scholar 

  4. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  5. Kopetz S, Shah AN, Gallick GE (2007) Src continues aging: current and future clinical directions. Clin Cancer Res 13:7232–7236

    Article  CAS  PubMed  Google Scholar 

  6. Lowell CA, Sorıano P (1996) Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Dev 10:1845–1857

    Article  CAS  PubMed  Google Scholar 

  7. Wu YY, Georg I, Diaz-Barreiro A, Varela N, Lauwerys B, Kumar R et al (2015) Concordance of increased B1 cell subset and lupus phenotypes in mice and humans is dependent on BLK expression levels. J Immunol 194:5692–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan Y, Tao JH, Zhang LP, Li LH, Ye DQ (2011) Association of BLK (rs13277113, rs2248932) polymorphism with systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 38:4445–4453

    Article  CAS  PubMed  Google Scholar 

  9. Zhou XJ, Lu X, Nath SK, Lv JC, Zhu SN, Yang HZ et al (2012) International Consortium on the Genetics of Systemic Lupus Erythematosus. Gene–gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in systemic lupus erythematosus. Arthritis Rheum 64:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S et al (2008) Association of systemic lupus erythematosus with C8orf13–BLK and ITGAM–ITGAX. N Engl J Med 358:900–909

    Article  CAS  PubMed  Google Scholar 

  11. Castillejo-López C, Delgado-Vega AM, Wojcik J, Kozyrev SV, Thavathiru E, Wu YY et al (2012) Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK. Ann Rheum Dis 71:136–142

    Article  PubMed  Google Scholar 

  12. Lu R, Vidal GS, Kelly JA, Delgado-Vega AM, Howard XK, Macwana SR et al (2009) Genetic associations of LYN with systemic lupus erythematosus. Genes Immun 10:397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poh AR, O’donoghue RJ, Ernst M (2015) Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 6:15752–15771

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J (2014) T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 75:945–952

    Article  CAS  PubMed  Google Scholar 

  15. Grammatikos AP, Kyttaris VC, Kis-Toth K, Fitzgerald LM, Devlin A, Finnell MD et al (2014) AT cell gene expression panel for the diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. Clin Immunol 150:192–200

    Article  CAS  PubMed  Google Scholar 

  16. Li R, Yang W, Zhang J, Hirankarn N, Pan HF, Mok CC et al (2012) Association of CD247 with systemic lupus erythematosus in Asian populations. Lupus 21:75–83

    Article  CAS  PubMed  Google Scholar 

  17. Ramos PS, Williams AH, Ziegler JT, Comeau ME, Guy RT, Lessard CJ et al (2011) Genetic analyses of interferon pathway–related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis Rheum 63:2049–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lessard CJ, Adrianto I, Kelly JA, Kaufman KM, Grundahi KM, Adler A et al (2011) Identification of a systemic lupus erythematosus susceptibility locus at 11p13 between PDHX and CD44 in a multiethnic study. Am J Hum Genet 88:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  CAS  PubMed  Google Scholar 

  20. Zhou M, Li LH, Peng H, Li R, Feng CC, Xu WD et al (2014) Decreased ITGAMand FcgammaRIIIA mRNA expression levels in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Med 14:269–274

    Article  CAS  PubMed  Google Scholar 

  21. Buyon JP, Petri MA, Kim MY, Kalunian KC, Grossman J, Hahn B et al (2005) The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med 142:95362

    Article  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Yang J, Zhang J, Sun L, Hirankarn N, Pan HF, Lau CS et al (2016) Genome-wide search followed by replication reveals genetic interaction of CD80 and ALOX5AP associated with systemic lupus erythematosus in Asian populations. Ann Rheum Dis 75:891–898

    Article  PubMed  Google Scholar 

  24. Namjou B, Ni Y, Harley IT, Chepelev I, Cobb B, Kottyan LC et al (2014) The effect of inversion at 8p23 on BLK association with lupus in Caucasian population. PLoS One 9(12):e115614

    Article  PubMed  PubMed Central  Google Scholar 

  25. Richman IB, Taylor KE, Chung SA, Trupin L, Petri M, Yelin E et al (2012) European genetic ancestry is associated with a decreased risk of lupus nephritis. Arthritis Rheum 64:3374–3382

    Article  PubMed  Google Scholar 

  26. Elghzaly AA, Metwally SS, El-Chennawi FA, Elgayaar MA, Mosaad YM, El-Toraby EE et al (2015) IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta; relation to other ethnic groups. Hum Immunol 76:525–531

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh D, Tsokos GC, Kyttaris VC (2012) c-Jun and Ets2 proteins regulate expression of spleen tyrosine kinase in T cells. J Biol Chem 287:11833–11841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Machado-Contreras JR, Munoz-Valle JF, Cruz A, Salazar-Camarena CC, Marín-Rosales M, Palafox-Sánchez CA (2016) Distribution of PTPN22 polymorphisms in SLE from western Mexico: correlation with mRNA expression and disease activity. Clin Exp Med 16:399–406

    Article  CAS  PubMed  Google Scholar 

  29. Delgado-Vega AM, Dozmorov MG, Quirós MB, Wu YY, Martínez-García B, Kozyrev SV et al (2012) Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein. Ann Rheum Dis 71:1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samuelson EM, Laird RM, Papillion AM, Tatum AH, Princiotta MF, Hayes SM (2014) Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS One 9(3):e92054

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Trakya University Scientific Research Fund (TUBAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Nuri Pamuk.

Ethics declarations

The ethical committee of Trakya University Medical Faculty approved the study protocol. All subjects provided written informed consent after explaining in detail the aim of study.

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pamuk, O.N., Gurkan, H., Pamuk, G.E. et al. BLK pathway-associated rs13277113 GA genotype is more frequent in SLE patients and associated with low gene expression and increased flares. Clin Rheumatol 36, 103–109 (2017). https://doi.org/10.1007/s10067-016-3475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-016-3475-7

Keywords

Navigation