Skip to main content

Advertisement

Log in

Greek rheumatoid arthritis patients have elevated levels of antibodies against antigens from Proteus mirabilis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Patients with rheumatoid arthritis (RA) from different ethnic groups present elevated levels of antibodies against Proteus mirabilis. This finding implicates P. mirabilis in the development of RA. The aim of this study was to investigate the importance of P. mirabilis in the etiopathogenesis of RA in Greek RA patients. In this study, 63 patients with RA and 38 healthy controls were included. Class-specific antibodies IgM, IgG, and IgA against three human cross-reactive and non-cross-reactive synthetic peptides from P. mirabilis—hemolysin (HpmB), urease C (UreC), and urease F (UreF)—were performed in all subjects, using the ELISA method. RA patients had elevated levels of IgM, IgG, and IgA antibodies against HpmB and UreC Proteus peptide which are significantly different compared to healthy controls: p = 0.005, p < 0.001, and p = 0.003 and p = 0.007, p = 0.002, and p < 0.001, correspondingly. Also, elevated levels of IgM, IgG, and IgA antibodies against the UreF Proteus peptide—which are non-cross-reactive with human tissue antigens—were observed and their significant difference compared to healthy controls (p = 0.007, p < 0.001, p < 0.001). Anti-peptide antibodies in RA patients showed a significant correlation with rheumatoid factors (Rf), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), especially when patients were divided into subgroups according to the receiving treatment. Greek RA patients present elevated levels of antibodies against P. mirabilis antigenic epitopes, such as in North European populations, albeit Greek RA patients presenting the cross-reaction antigen in a low percentage. These results indicate that P. mirabilis through the molecular mimicry mechanism leads to inflammation and damage of the joints in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ED H Jr (1999) Mechanisms of disease: rheumatoid arthritis pathophysiology and implication for therapy. NEJM 322:1277–1289

    Google Scholar 

  2. MacGregor A, Silman A (2003) Rheumatoid arthritis and other synovial disorders: classification and epidemiology. In: Hochberg M, Silman A, Smollen J et al. (eds) Rheumatology, 3rd edn. Philadelphia, pp 757–764

  3. Yukioka M, Wakitani S, Murata N, Toda Y, Ogawa R, Kaneshige T et al (1998) Elderly-onset rheumatoid arthritis and its association with HLA-DRB1 alleles in Japenese. Br J Rheumatol 37:98–101

    Article  CAS  PubMed  Google Scholar 

  4. Symmons DP, Barrett EM, Bankhead CR, Scott DG, Silman AJ (1994) The incidence of rheumatoid arthritis in the United Kingdom: results from the Norfolk Arthritis Register. Br J Rheumatol 33:735–739

    Article  CAS  PubMed  Google Scholar 

  5. Gabriel S (2001) The epidemiology of rheumatoid arthritis. Rheum Dis Clin N Am 27:269–281

    Article  CAS  Google Scholar 

  6. Rothschild BM, Woods RJ, Rothschild C, Sebes JI (1992) Geographic distribution of rheumatoid arthritis in ancient North America: implications for pathogenesis. Semin Artbritis Rheum 22:181–187

    Article  CAS  Google Scholar 

  7. Andrianakos A, Trontzas P, Christoyannis F, Dantis P, Voudouris C, Georgountzos A et al (2003) Prevalence of rheumatic diseases in Greece: a cross-sectional population based epidermiological study. The ESORDIG study. J Rheumatol 30:1589–1601

    PubMed  Google Scholar 

  8. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37

    Article  CAS  PubMed  Google Scholar 

  9. Stastny P (1978) Association of B cell alloantigen DRw4 with rheumatoid arthritis. NEJM 298:869–871

    Article  CAS  PubMed  Google Scholar 

  10. Nepom GT, Byers P, Seyfried C, Healey LA, Wilske KR, Stage D et al (1989) HLA genes associated with rheumatoid arthritis: identification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum 32:15–21

    Article  CAS  PubMed  Google Scholar 

  11. Ollier W, Thomson W (1992) Population genetic of rheumatoid arthritis. Rheum Dis Clin Am 18:741–759

    CAS  Google Scholar 

  12. Wallin J, Hillert J, Olerup O, Carlsson B, Ström H (1991) Association of rheumatoid arthritis with a dominant DR1/Dw4/Dw14 sequence motif, but not with T cell receptor β chain gene alleles or haplotypes. Arthritis Rheum 34:1416–1424

    Article  CAS  PubMed  Google Scholar 

  13. Weyand CM, Hicok KC, Conn DL, Goronzy JJ (1992) The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med 117:801–806

    Article  CAS  PubMed  Google Scholar 

  14. Hameed K, Bowman S, Kondeatis E, Vaughan R, Gibson T (1997) The association of HLA-DRB genes and the shared epitope with rheumatoid arthritis in Pakistan. Br J Rheumatol 36:1184–1188

    Article  CAS  PubMed  Google Scholar 

  15. Stavropoulos C, Spyropoulou M, Koumantaki Y, Kappou I, Kaklamani V, Linos A et al (1997) HLA-DRB1 alleles in Greek rheumatoid arthritis patients and their association with clinical characteristics. Eur J Immunogenet 24:265–274

    Article  CAS  PubMed  Google Scholar 

  16. Ioannidis JP, Tarassi K, Papadopoulos IA, Voulgari PV, Boki KA, Papasteriades CA et al (2002) Shared epitopes and rheumatoid arthritis: disease associations in Greece and meta-analysis of Mediterranean European populations. Semin Arthritis Rheum 31:361–370

    Article  CAS  PubMed  Google Scholar 

  17. Silman AJ, MacGregor AJ, Thomson W, Holligan S, Carthy D, Farhan A et al (1993) Twin concordance rates for rheumatoid arthritis: results from a nation-wide study. Br J Rheumatol 32:903–907

    Article  CAS  PubMed  Google Scholar 

  18. Tani Y, Tiwana H, Hukuda S, Nishioka J, Fielder M, Wilson C et al (1997) Antibodies to Klebsiella, Proteus, and HLA-B27 peptides in Japanese patients with ankylosing spondylitis and rheumatoid arthritis. J Rheumatol 24:109–114

    CAS  PubMed  Google Scholar 

  19. Mäki-Ikola O, Penttinen M, Von Essen R, Gripenberg-Lerche C, Isomäki H, Granfors K (1997) IgM, IgG and IgA calss enterobacterial antibodies in serum and synovial fluid in patients with ankylosing spondylitis and rheumatoid arthritis. Br J Rheumatol 36:1051–1053

    Article  PubMed  Google Scholar 

  20. Wilson C, Thakore A, Isenberg D, Ebringer A (1997) Correlation between anti-Proteus antibodies and isolation rates of P. mirabilis in rheumatoid arthritis. Rheumatol Int 16:187–189

    Article  CAS  PubMed  Google Scholar 

  21. Senior BW, Anderson GA, Morley KD, Kerr MA (1999) Evidence that patients with rheumatoid arthritis have asymptomatic “non significant” Proteus mirabilis bacteriuria more frequently than healthy controls. J Infect 38:99–106

    Article  CAS  PubMed  Google Scholar 

  22. Rashid T, Ebringer A (2012) Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis 2012:Article ID 539282, 9 pages

  23. Ebringer A, Cunningham P, Ahmadi K, Wrigglesworth J, Hosseini R, Wilson C (1992) Sequence similarity between HLA-DR1 and DR4 subtypes associated with rheumatoid arthritis and Proteus/Serratia membrane haemolysins. Ann Rheum Dis 51:1245–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson C, Ebringer A, Ahmadi K, Wrigglesworth J, Tiwana H, Fielder M et al (1995) Shared amino acid sequences between major histocompatibility complex class II glycoproteins, type XI collagen and Proteus mirabilis in rheumatoid arthritis. Ann Rheum Dis 54:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilson C, Rashid T, Tiwana H, Beyan H, Hughes L, Bansal S et al (2003) Cytotoxicity response to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 30:972–978

    CAS  PubMed  Google Scholar 

  26. Rashid T, Jayakumar KS, Binder A, Ellis S, Cunningham P, Ebringer A (2007) Rheumatoid arthritis patients have elevated antibodies to cross-reactive and non cross-reactive antigens from Proteus microbes. Clin Exp Rheumatol 25:259–267

    CAS  PubMed  Google Scholar 

  27. Ebringer A, Rashid T (2013) Rheumatoid arthritis is caused by a Proteus urinary tract infection. APMIS 122:363–368

    Article  PubMed  Google Scholar 

  28. Newkirk MM, Goldbach-Mansky R, Senior BW, Klippel J, HR S Jr, El-Gabalawy HS (2005) Elevated levels of IgM and IgA antibodies to Proteus mirabilis and IgM antibodies to Escherichia coli are associated with early rheumatoid factor (RF)-positive rheumatoid arthritis. Rheumatology 44:1433–1441

    Article  CAS  PubMed  Google Scholar 

  29. Senior BW (1979) The special affinity of particular types of Proteus mirabilis for the urinary tract. Med Microbiol 12:1–8

    Article  CAS  Google Scholar 

  30. Rashid T, Ebringer A (2011) Rheumatoid arthritis is caused by asymptomatic Proteus urinary tract infections. In: Nikibakhsh A (ed) Clinical management of complicated urinary tract infection. In-Tech 11

  31. Rashid T, Ebringer A (2007) Ankylosing spondylitis is linked to Klebsiella—the evidence. Clin Rheumatol 26:858–864

    Article  PubMed  Google Scholar 

  32. Amieva MR, El-Omar EM (2008) Host–bacterial interactions in Helicobacter pylori infection. Gastroenterology 134:306–323

    Article  CAS  PubMed  Google Scholar 

  33. Buret AG, Mitchell K, Muench DG, Scott KG (2002) Giardia lamblia disrupts tight junctional ZO-1 and increases permeability in non-transformed human small intestinal epithelial monolayers: effects of epidermal growth factor. Parasitology 125:11–19

    Article  CAS  PubMed  Google Scholar 

  34. Taneja V (2014) Arthritis susceptibility and gut microbiome. FEBS Lett 22:4244–4249

    Article  Google Scholar 

  35. Djavad N, Bas S, Shi X, Schwager J, Jeannet M, Vischer T et al (1996) Comparison orheumatoid factors of rheumatoid arthritis patients, of individuals with mycobacterial infections and of normal controls: evidence for maturation in the absence of an autoimmune response. Eur J Immunol 26:2480–2486

    Article  CAS  PubMed  Google Scholar 

  36. Spadaro A, Riccieri V, Sili Scavalli A, Taccari E, Zoppini A (1993) One year treatment with low dose methotrexate in rheumatoid arthritis: effect on class specific rheumatoid factors. Clin Rheumatol 12:357–360

    Article  CAS  PubMed  Google Scholar 

  37. Bobbio-Pallavicini F, Alpini C, Caporali R, Avalle S, Bugatti S, Montecucco C (2004) Auto antibody profile in rheumatoid arthritis during long-term infliximab treatment. Arthritis Res Ther 6:264–267

    Article  Google Scholar 

  38. Green M, Marzo-Ortega H, McGonagle D, Wakefield R, Proudman S, Conaghan P et al (1999) Persistence of mild, early inflammatory arthritis: the importance of disease duration, rheumatoid factor, and the shared epitope. Arthritis Rheum 42:2184–2188

    Article  CAS  PubMed  Google Scholar 

  39. Lakos G, Soós L, Fekete A, Szabó Z, Zeher M, Horváth IF et al (2008) Anti-cyclic citrullinated peptide antibody isotypes in rheumatoid arthritis: association with disease duration, rheumatoid factor production and the presence of shared epitope. Clin Exp Rheumatol 26:253–260

    CAS  PubMed  Google Scholar 

  40. Ibn Yacoub Y, Amine B, Laatiris A, Hajjaj-Hassouni N (2012) Rheumatoid factor and antibodies against citrullinated peptides in Moroccan patients with rheumatoid arthritis: association with disease parameters and quality of life. Clin Exp Rheumatol 31:329–334

    Article  Google Scholar 

  41. Nicaise-Roland P, Nogueira L, Demattei C, de Chaisemartin L, Rincheval N, Cornillet M et al (2013) Autoantibodies to citrullinated fibrinogen compared with anti-MCV and anti-CCP2 antibodies in diagnosing rheumatoid arthritis at an early stage: data from the French ESPOIR cohort. Ann Rheum Dis 72:357–362

    Article  PubMed  Google Scholar 

  42. Luban S, Li ZG (2010) Citrullinated peptide and its relevance to rheumatoid arthritis: an update. Int J Rheum Dis 13:284–287

    Article  PubMed  Google Scholar 

  43. Neu HC (1992) Urinary tract and infections. Am J Med 92:S63–S70

    Article  Google Scholar 

  44. Wilson C, Senior BW, Tiwana H, Caparros-Wanderley W, Ebringer A (1998) Antibiotic sensitivity and proticine typing of Proteus mirabilis strains associated with rheumatoid arthritis. Rheumatol Int 17:203–205

    Article  CAS  PubMed  Google Scholar 

  45. Coker C, Poore CA, Li X, Mobley HL (2000) Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2:1497–1505

    Article  CAS  PubMed  Google Scholar 

  46. Jansen AM, Lockatell CV, Johnson DE, Mobley HL (2003) Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71:3607–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Griffith DP (1978) Struvite stones. Kidney Int 13:372–382

    Article  CAS  PubMed  Google Scholar 

  48. Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, Luscombe NM et al (2008) Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190:4027–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li X, Johnson DE, Mobley HL (1999) Requirement of MrpH for mannose-resistant Proteus-Like Fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun 67:2822–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cock IE (2014) The early stages of rheumatoid arthritis: new targets for the development of combinational drug therapies. OA Arthritis 2:5

    Google Scholar 

  51. Allison C, Lai HC, Hughes C (1992) Coordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6:1583–1591

    Article  CAS  PubMed  Google Scholar 

  52. Ebringer A, Rashid T (2006) Rheumatoid arthritis is an autoimmune disease triggered by Proteus urinary tract infection. Clin Develop Immunol 13:41–48

    Article  CAS  Google Scholar 

  53. Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R, Zap A (1999) The IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825–836

    Article  CAS  PubMed  Google Scholar 

  54. Weisbart RH, Min Y, Wong AL, Kang J, Kwunyeun S, Lin A et al (2005) Proteus mirabilis fumarate A-chain in rheumatoid arthritis. J Rheumatol 32:1208–1212

    CAS  PubMed  Google Scholar 

  55. Kjeldsen-Kragh J, Rashid T, Dybwad A, Sioud M, Haugen M, Førre O, Ebringer A (1995) Decrease in anti-Proteus mirabilis but not anti-Escherichia coli antibody levels in rheumatoid arthritis patients treated with fasting and a one year vegetarian diet. Ann Rheum Dis 54:221–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Drosos AA, Lanchbury JS, Panayi GS, Moutsopoulos HM (1992) Rheumatoid arthritis in Greek and British patients. A comparative clinical, radiologic, and serologic study. Arthritis Rheum 35:745–748

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Christopoulos.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christopoulos, G., Christopoulou, V., Routsias, J.G. et al. Greek rheumatoid arthritis patients have elevated levels of antibodies against antigens from Proteus mirabilis . Clin Rheumatol 36, 527–535 (2017). https://doi.org/10.1007/s10067-016-3441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-016-3441-4

Keywords

Navigation