Skip to main content
Log in

Ultrasonographic evaluation of the muscle architecture in patients with systemic lupus erythematosus

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a multi-system chronic inflammatory disease with a broad spectrum of clinical and serological manifestations. Although clinical evidence of proximal skeletal muscle involvement is not rare in patients with SLE, there is no knowledge about the effects of SLE on the macroscopic structural parameters of the muscles. Therefore, in this study, we aimed to explore the muscle strength and structure of SLE patients using isokinetic testing and ultrasonographic imaging. Thirty-one SLE patients (5 men, 26 women) with a mean age of 38.61 ± 10.68 years and mean disease duration of 3.71 ± 3.23 years without any previous history of myositis and 31 age- and sex-matched healthy subjects were enrolled. Demographic and clinical characteristics of the patients were recorded. Ultrasonographic evaluations were performed with a 7- to 12-MHz linear probe from vastus lateralis and gastrocnemius muscles of the nondominant extremity. Measurements included muscle thickness, pennation angle, and fascicule length. Isokinetic nondominant knee muscle strength tests were performed at 60 and 180°/s. We found that muscle thickness, pennation angle, and fascicle length of vastus lateralis muscles were increased in patients with SLE in comparison to control subjects (p < 0.001, p = 0.007, and p = 0.217, respectively). On the other hand, the measurements pertaining to the gastrocnemius muscles were found to be similar between the two groups. We observed that all isokinetic knee muscle strength values were decreased in SLE patients, and knee strength values were found to be negatively correlated with age and positively correlated with height (all p < 0.01). We found that the structural and strength changes were seen in the proximal muscles of SLE patients. Pathophysiology and clinical relevance of these changes need to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Isenberg DA, Snaith ML (1981) Muscle disease in systemic lupus erythematosus: a study of its nature, frequency and cause. J Rheumatol 8:917–924

    Google Scholar 

  2. Tsokos GC, Moutsopoulos HM, Steinberg AD (1981) Muscle involvement in systemic lupus erythematosus. JAMA 246:766–768

    Article  CAS  PubMed  Google Scholar 

  3. Garton MJ, Isenberg DA (1997) Clinical features of lupus myositis versus idiopathic myositis: a review of 30 cases. Br J Rheumatol 36:1067–1074

    Article  CAS  PubMed  Google Scholar 

  4. Lim KL, Abduhl-Wahab R, Lowe J, Powell RJ (1994) Muscle biopsy abnormalities in systemic lupus erythematosus: correlation with clinical and laboratory parameters. Ann Rheum Dis 53:178–182

    Article  CAS  PubMed  Google Scholar 

  5. Richards AJ (1998) Hydroxychloroquine myopathy. J Rheumatol 25:1642–1643

    CAS  PubMed  Google Scholar 

  6. Lorenz T, Campello M (2001) Biomechanics of skeletal muscle. In: Nordin M, Frankel VH (eds) Basic biomechanics of the musculoskeletal system, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 148–174

    Google Scholar 

  7. Aagaard P, Andersen J, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP et al (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623

    Article  CAS  PubMed  Google Scholar 

  8. Mahlfeld K, Franke J, Awiszus F (2004) Postcontraction changes of muscle architecture in human quadriceps muscle. Muscle Nerve 29:597–600

    Article  PubMed  Google Scholar 

  9. Blazevich A, Cannavan D, Coleman D, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575

    Article  PubMed  Google Scholar 

  10. Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74:2740–2744

    CAS  PubMed  Google Scholar 

  11. Alegre LM, Jimenez F, Gonzalo-Orden JM, Martin-Acero R, Aguado X (2006) Effects of dynamic resistance training on fascicle length and isometric strength. J Sports Sci 24:501–508

    Article  PubMed  Google Scholar 

  12. Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M (2000) Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 88:811–816

    CAS  PubMed  Google Scholar 

  13. Martinson H, Stokes MJ (1991) Measurement of anterior tibial muscle size using real-time ultrasound imaging. Eur J Appl Physiol Occup Physiol 63:250–254

    Article  CAS  PubMed  Google Scholar 

  14. Gao F, Grant TH, Roth EJ, Zhang LQ (2009) Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors. Arch Phys Med Rehabil 90:819–826

    Article  PubMed  Google Scholar 

  15. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    Article  CAS  PubMed  Google Scholar 

  16. Petri M, Kim MY, Kalunian KC, Grossman J, Hahn BH, Sammaritano LR et al (2005) Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med 353:2550–2558

    Article  CAS  PubMed  Google Scholar 

  17. Arampatzis A, De Monte G, Karamanidis K, Morey-Klapsing G, Stafilidis S, Brüggemann G-P (2006) Influence of the muscle-tendon unit's mechanical and morphological properties on running economy. J Exp Biol 209:3345–3357

    Article  PubMed  Google Scholar 

  18. Karamanidis K, Arampatzis A (2006) Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 39:406–417

    Article  PubMed  Google Scholar 

  19. Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S (1997) Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol 82:354–358

    CAS  PubMed  Google Scholar 

  20. Zoma A (2004) Musculoskeletal involvement in systemic lupus erythematosus. Lupus 13:851–853

    Article  CAS  PubMed  Google Scholar 

  21. Vizjak A, Perković T, Rozman B, Koselj-Kajtna M, Ferluga D (1998) Skeletal muscle immune deposits in systemic lupus erythematosus. Correlation with histologic changes, autoantibodies, and clinical involvement. Scand J Rheumatol 27:207–214

    Article  CAS  PubMed  Google Scholar 

  22. Estes ML, Ewing-Wilson D, Chou SM, Mitsumoto H, Hanson M, Shirey E et al (1987) Chloroquine neuromyotoxicity. Am J Med 82:447–455

    Article  CAS  PubMed  Google Scholar 

  23. Richter JG, Becker A, Ostendorf B, Specker C, Stoll G, Neuen-Jacob E et al (2003) Differential diagnosis of high serum creatine kinase levels in systemic lupus erythematosus. Rheumatol Int 23:319–323

    Article  PubMed  Google Scholar 

  24. Sokolove J, Copland A, Shirvani S, Brown J, Posley K, Chung L (2010) A 39-year-old woman with lupus, myositis, and a recalcitrant vasculopathy. Arthritis Care Res 62:1351–1356

    Article  Google Scholar 

  25. Casado E, Gratacós J, Tolosa C, Martínez JM, Ojanguren I, Ariza A et al (2006) Antimalarial myopathy: an underdiagnosed complication? Prospective longitudinal study of 119 patients. Ann Rheum Dis 65(3):385–390

    Article  CAS  PubMed  Google Scholar 

  26. Maksymowych W, Russell AS (1987) Antimalarials in rheumatology: efficacy and safety. Semin Arthritis Rheum 16(3):206–221

    Article  CAS  PubMed  Google Scholar 

  27. Adler RS, Garofalo G (2009) Ultrasound in the evaluation of the inflammatory myopathies. Curr Rheumatol Rep 11:302–308

    Article  PubMed  Google Scholar 

  28. Meng C, Adler RS, Peterson M, Kagen L (2001) Combined use of power Doppler and gray scale sonography: a new technique for the assessment of inflammatory myopathy. J Rheumatol 28:1271–1282

    CAS  PubMed  Google Scholar 

  29. Fleckenstein JL, Reimers CD (1996) Inflammatory myopathies, a radiologic evaluation. Radiol Clin North Am 34:427–439

    CAS  PubMed  Google Scholar 

  30. Weber MA (2009) Ultrasound in the inflammatory myopathies. Ann N Y Acad Sci 1154:159–170

    Article  PubMed  Google Scholar 

  31. Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN (2007) Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech (Bristol, Avon) 22:718–724

    Article  Google Scholar 

  32. Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN (2008) In vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol 50:44–50

    Article  CAS  PubMed  Google Scholar 

  33. Matschke V, Murphy P, Lemmey AB, Maddison PJ, Thom JM (2010) Muscle quality, architecture, and activation in cachectic patients with rheumatoid arthritis. J Rheumatol 37:282–284

    Article  PubMed  Google Scholar 

Download references

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Kaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, A., Kara, M., Tiftik, T. et al. Ultrasonographic evaluation of the muscle architecture in patients with systemic lupus erythematosus. Clin Rheumatol 32, 1155–1160 (2013). https://doi.org/10.1007/s10067-013-2249-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-013-2249-8

Keywords

Navigation