Skip to main content

Advertisement

Log in

Photodynamic therapy using talaporfin sodium for synovial membrane from rheumatoid arthritis patients and collagen-induced arthritis rats

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

We investigated the efficacy of photodynamic therapy (PDT) using talaporfin sodium as a new method of synovectomy for rheumatoid arthritis (RA). We first used RA synovial membrane (RASM) for in vitro and in vivo study. The RASM was obtained from patients with RA during total knee replacement. In the in vitro study, RA fibroblast-like synoviocytes (RASCs) obtained from the RASM were examined by fluorescent microscopy to measure the intracellular localization of talaporfin sodium. The cells were then subjected to PDT, and their viability was examined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium inner salt assay. In the in vivo assay, RASM was obtained as described above, grafted onto severe combined immunodeficiency (SCID) mice and subjected to PDT. The damaged area of RASM was evaluated histologically at 1 day after PDT. Next, we performed a separate experiment using rats with collagen-induced arthritis (CIA). After intra-articular injection of talaporfin sodium, the concentration of talaporfin sodium accumulated in the CIA synovial membrane (CIASM) was compared with that in cartilage, periarticular muscle, and skin. We then performed PDT with intra-articular injection of talaporfin sodium and intra-articular irradiation. The damaged area of the CIASM was measured at 1 day after the PDT, and the articular histological and radiological changes of the ankle were observed at 56 days after the PDT. In RASM, talaporfin sodium accumulated in lysosomes in vitro, and the phototoxicity to RASCs in vitro and to RASM grafted onto SCID mice in vivo depended on the concentration of talaporfin sodium and the laser energy. In CIA rats, there was a greater accumulation of talaporfin sodium in the CIASM than in normal tissue. The CIASM was selectively damaged at 1 day after the PDT, and the bone and cartilage destruction were ameliorated at 56 days after the PDT. In conclusion, PDT using talaporfin sodium might be a new method for synovectomy in patients with RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Isenberg DA (2004) Pathophysiology of musculoskeletal disease. In: Maddison PJ, Woo P, Glass D (eds) Oxford textbook of rheumatology. Oxford University Press, New York, pp 325–285

    Google Scholar 

  2. Ranawat C, Staub L, Freiberg R, Granda L, Rivelis M (1971) A study of regenerated synovium after synovectomy of the knee in rheumatoid arthritis. Arthritis Rheumatol 14:117–125

    Article  CAS  Google Scholar 

  3. Pazakis M, Mills D, Bartholomew B, Clayton M, Smyth C (1973) A visual, histological, and enzymatic study of regeneration rheumatoid synovium in the synovectomized knee. J Bone Jt Surg Am 55:287–300

    Google Scholar 

  4. O’Duffy E, Clunie P, Lui D, Edwards J, Ell P (1999) Double blind glucocorticoid controlled trial of smarum-153 particulate hydroxyapatite radiatin synovectomy for chronic knee synovitis. Ann Rheumatol Dis 58:554–558

    Article  CAS  Google Scholar 

  5. Abramson AL, Shikowitz MJ, Mallooly VM et al (1994) Variable light-dose effect on photodynamic therapy for laryngeal papillomas. Arch Otolaryngol Head Neck Surg 120:852–855

    PubMed  CAS  Google Scholar 

  6. Gluckman JL (1991) Hematoporphyrin photodynamic therapy: is there truly a future in head and neck oncology? Reflections on a 5-year experience. Latyngoscope 101(Part 1):36–42

    CAS  Google Scholar 

  7. Schweitzer VG (1990) Photodynamic therapy for treatment of head and neck cancer. Otolaryngol Head Neck Surg 102:225–232

    PubMed  CAS  Google Scholar 

  8. Wenig BL, Kurtzman DM, Grossweiner LI et al (1990) Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck. Arch otolaryngol Head Neck Surg 116:1267–1270

    PubMed  CAS  Google Scholar 

  9. Stables GI, Ash DV (1995) Photodynamic therapy. Cancer Treat Rev 21:311–323

    Article  PubMed  CAS  Google Scholar 

  10. Ratkey LG, Chowadhary RK, Iamaroon A, Richter AM, Neyndorff HC et al (1999) Amelioration of antigen-induced arthritis in rabbits by induction of apoptosis of inflammatory cells with local application of transdermal photodynamic therapy. Arthritis Rheumatol 41:525–534

    Google Scholar 

  11. Trauner KB, Gaudour-Edwards R, Bamberg M, Shortkroff S, Sledge C et al (1998) Photodynamic synovectomy using Benzoporphyrin derivative in an antigen-induced arthritis model for rheumatoid arthritis. Photochem Photobiol 67:133–139

    Article  PubMed  CAS  Google Scholar 

  12. Chodwdhary RK, Ratkey LG, Canaan AJ, Waterfield JD, Richter AM et al (1998) Uptake of Verteporfin by articular tissues following systemic and intra-articular administration. Biopharm Drug Dispos 19:395–400

    Article  Google Scholar 

  13. Trauner K, Gandour-Edwards R, Bamberg M, Nishioka NS, Flotte T et al (1998) Influence of light delivery on photodynamic synovectomy in an antigen-induced arthritis model for rheumatoid arthritis. Lasers in Surg Med 22:147–156

    Article  CAS  Google Scholar 

  14. Teybwe KB, Hasan T (1996) Photodynamic treatment of rheumatoid and inflammatory arthritis. Photochem Photobiol 64:740–750

    Article  Google Scholar 

  15. Beischer AD, Bhathal P, de Steiger R, Penn D, Stylli S (2002) Synovial ablation in a rabbit rheumatoid arthritis model using photodynamic therapy. ANZ J Surg 72:517–522

    Article  PubMed  Google Scholar 

  16. Brown SB, Vernon DI, Holroy JA et al (1992) Pharmacokinetics of photofrin in man. In: Spinelli P, Dal Fante M, Marchesini R et al (eds) Photodynamic therapy and biomedical lasers. Excepta Medica, Amsterdam, pp 475–479

    Google Scholar 

  17. Taber SW, Fingar VH, Coots CT, Wieman TJ (1998) Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a Phase I clinical study. Clin Cancer Res 4:2741–2746

    PubMed  CAS  Google Scholar 

  18. Nakamura H, Susuki Y, Takeuchi M, Saito T, Yakayama M, Aizawa K (2002) Morphologic evaluation of the antitumor activity of photodynamic therapy (PDT) using mono-L-aspartyl chlorin e6 (NPe6) against uterine cervical carcinoma cell lines. Int J Gynecol Cancer 12:177–186

    Article  PubMed  Google Scholar 

  19. Mori K, Yoneya S, Anzai K, Kabasawa S, Sodeyama T et al (2001) Photodynamic therapy of experimental choroidal neovascularization with a hydrophilic photosensitizer: mono-L-aspartyl chlorin e6. Retina 21:499–508

    Article  PubMed  CAS  Google Scholar 

  20. Nagae T, Aizawa K, Uchimura N, Tani D, Abe M et al (2001) Endovascular photodynamic therapy using mono-L-aspartyl-chlorin e6 to inhibit Intimal hyperplasia in balloon-injured rabbit arteries. Lasers Surg Med 28:381–388

    Article  PubMed  CAS  Google Scholar 

  21. Kato H, Furukawa K, Sato M, Okunaka T, Kusunoki Y et al (2003) Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer 42:103–111

    Article  PubMed  Google Scholar 

  22. Kessel D (1997) Pharmacokinetics of N-aspartyl chlorine e6 in cancer patients. J Photochem Photobiol B 39:81–83

    Article  PubMed  CAS  Google Scholar 

  23. Baas P, Michelsen C, Oppelaar H et al (1994) Enhancement of interstitial photodynamic therapy by mitomycin c and EO9 in a mouse tumour model. Int J Cancer 56:880–885

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto J, Yamamoto S, Hirano T et al (2006) Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma. Clin Cancer Res 12:7132–7139

    Article  PubMed  CAS  Google Scholar 

  25. Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  26. Marcinkowska A, Malarska A, Saczko J, Chwilkowska A, Wysocka T, Drag-Zalesinska M, Wysocka T, Banas T (2001) Photofrin—factor of photodynamic therapy induces apoptosis and necrosis. Folia Histochem Cytobiol 39:177–178

    PubMed  Google Scholar 

  27. Roberts WG, Berns MW (1989) In vitro photosensitization I. Cellular uptake and subcellular localization of mono-L-aspartyl chlorin e6, chloro-aluminum sulfonated phthalocyanine, and photofrin II. Lasers Surg Med 9:90–101

    Article  PubMed  CAS  Google Scholar 

  28. Epstein FH (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  Google Scholar 

  29. Cawston TE (1995) Proteinases and connective tissue breakdown. In: Henderson B, Edwards JCW, Pettipher ER (eds) Mechanisms and models in rheumatoid arthritis. Academic, London, UK, pp 333–359

    Chapter  Google Scholar 

  30. Van den Berg WB, Van Lent PL (1996) The role of macrophages in chronic arthritis. Immunology 195:614–623

    Google Scholar 

  31. Gravallese EM, Golding SR (2000) Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. Arthritis Rheum 43:2143–2151 (review)

    Article  PubMed  CAS  Google Scholar 

  32. Feldmann M, Maini RN (2001) Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196

    Article  PubMed  CAS  Google Scholar 

  33. Hale LP, Haynes BF (1997) Pathology of rheumatoid arthritis and associated disorders. In: Koopman WJ (ed) Arthritis and allied conditions. a textbook of rheumatology. 13st edn. Williams & Wilkins, Baltimore, pp 993–1016

    Google Scholar 

  34. Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R et al (2003) NF-kappaB protects from the lysosomal pathway of cell death. EMBO J 22:5313–5322

    Article  PubMed  CAS  Google Scholar 

  35. Bidere N, Lorenzo HK, Carmona S, Laforge M et al (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    Article  CAS  Google Scholar 

  36. Nelson JS, Roberts WG, Berns MW (1987) In vivo studies on the utilization of mono-L-aspartyl chlorine e6 (NPe6) for photodynamic therapy. Cancer Res 47:4681–4685

    PubMed  CAS  Google Scholar 

  37. Tsukagoshi S (2004) Development of a novel photosensitizer, talaporfin sodium, for the photodynamic therapy (PDT). Gan To Kagaku Ryoho 31:979–985

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Mr. Satosi Imai (Meiji Seika, Tokyo, Japan) for the kind gift of the photosensitizer talaporfin sodium and to Mr. Akira Kaneda (Matsushita Electric Industrial, Tokyo, Japan) for the kind gift of the diode laser system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Torikai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torikai, E., Kageyama, Y., Kohno, E. et al. Photodynamic therapy using talaporfin sodium for synovial membrane from rheumatoid arthritis patients and collagen-induced arthritis rats. Clin Rheumatol 27, 751–761 (2008). https://doi.org/10.1007/s10067-007-0794-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-007-0794-8

Keywords

Navigation