Skip to main content

Advertisement

Log in

Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The objective of this study is to examine the differential expression of mast cell tryptase and its receptor, protease-activated receptor-2 (PAR-2), in the synovium and synovial fluid of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Biochemical and immunohistochemical analyses were performed to determine whether the trypsin-like protease in the synovium is identical to mast cell tryptase. The effects of mast cell tryptase on the proliferation of synovial fibroblast-like cells (SFCs) and the release of IL-8 thereof were evaluated by the [3H]-thymidine incorporation and ELISA, respectively. The trypsin-like protease in the synovium of RA patients was identical to human mast cell tryptase, which was composed of two subunits: 33 and 34 kDa. The 33- and 34-kDa proteins are different glycosylated forms of the 31-kDa protein, which was unglycosylated. Mast cell tryptase activity in RA synovial fluid was significantly higher than that in OA synovial fluid, while their activities and expression in the synovium were similar. Expression of PAR-2 mRNA in the synovium was higher in RA than in OA. Mast cell tryptase containing the unglycosylated 31-kDa subunit was the predominant form in synovial fluid. RA patients had higher amounts of this subunit in their synovial fluid than OA patients. Mast cell tryptase and PAR-2 activating peptide stimulated the proliferation of SFCs and release of IL-8 from these cells. Mast cell tryptase secretion into RA synovial fluid is higher than OA synovial fluid. Mast cell tryptase in synovial fluid stimulates the proliferation of SFCs and the release of pro-inflammatory cytokines via PAR-2, which may contribute to exacerbation of synovitis in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malone DG, Wilder RL, Saavedra-Delgado AM, Metcalfe DD (1987) Mast cell numbers in rheumatoid synovial tissues. Correlations with quantitative measures of lymphocytic infiltration and modulation by antiinflammatory therapy. Arthritis Rheum 30:130–137

    Article  PubMed  CAS  Google Scholar 

  2. Gruber BL, Schwartz LB, Ramamurthy NS, Irani AM, Marchese MJ (1988) Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J Immunol 140:3936–3942

    PubMed  CAS  Google Scholar 

  3. Bridges AJ, Malone DG, Jicinsky J, Chen M, Ory P, Engber W et al (1991) Human synovial mast cell involvement in rheumatoid arthritis and osteoarthritis. Relationship to disease type, clinical activity, and antirheumatic therapy. Arthritis Rheum 34:1116–1124

    Article  PubMed  CAS  Google Scholar 

  4. Dean G, Hoyland JA, Denton J, Donn RP, Freemont AJ (1993) Mast cells in the synovium and synovial fluid in osteoarthritis. Br J Rheumatol 32:671–675

    Article  PubMed  CAS  Google Scholar 

  5. Tetlow LC, Woolley DE (1995) Distribution, activation and tryptase/chymase phenotype of mast cells in the rheumatoid lesion. Ann Rheum Dis 54:549–555

    PubMed  CAS  Google Scholar 

  6. de Paulis A, Marino I, Ciccarelli A, de Crescenzo G, Concardi M, Verga L et al (1996) Human synovial mast cells. I. Ultrastructural in situ and in vitro immunologic characterization. Arthritis Rheum 39:1222–1233

    Article  PubMed  Google Scholar 

  7. Buckley MG, Gallagher PJ, Walls AF (1998) Mast cell subpopulations in the synovial tissue of patients with osteoarthritis: selective increase in numbers of tryptase-positive, chymase-negative mast cells. J Pathol 186:67–74

    Article  PubMed  CAS  Google Scholar 

  8. Gotis-Graham I, Smith MD, Parker A, McNeil HP (1998) Synovial mast cell responses during clinical improvement in early rheumatoid arthritis. Ann Rheum Dis 57:664–671

    Article  PubMed  CAS  Google Scholar 

  9. Woolley DE, Tetlow LC (2000) Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res 2:65–74

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz LB (1994) Tryptase: a mast cell serine protease. Methods Enzymol 244:88–100

    PubMed  CAS  Google Scholar 

  11. Smith TJ, Hougland MW, Johnson DA (1984) Human lung tryptase. Purification and characterization. J Biol Chem 259:11046–11051

    PubMed  CAS  Google Scholar 

  12. Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS et al (2002) Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 168:3577–3585

    CAS  Google Scholar 

  13. D’Andrea MR, Rogahn CJ, Andrade-Gordon P (2000) Localization of protease-activated receptors-1 and -2 in human mast cells: indications for an amplified mast cell degranulation cascade. Biotech Histochem 75:85–90

    PubMed  CAS  Google Scholar 

  14. Smith R, Ransjo M, Tatarczuch L, Song SJ, Pagel C, Morrison JR et al (2004) Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation. J Bone Miner Res 19:507–516

    Article  PubMed  CAS  Google Scholar 

  15. Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180

    PubMed  CAS  Google Scholar 

  16. Uehara A, Muramoto K, Takada H, Sugawara S (2003) Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 170:5690–5696

    PubMed  CAS  Google Scholar 

  17. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  18. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and therapeutic criteria committee of the American rheumatism association. Arthritis Rheum 29:1039–1049

    Article  PubMed  CAS  Google Scholar 

  19. Nakano S, Ikata T, Kinoshita I, Kanematsu J, Yasuoka S (1999) Characteristics of the protease activity in synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Clin Exp Rheumatol 17:161–170

    PubMed  CAS  Google Scholar 

  20. Yasuoka S, Ohnishi T, Kawano S, Tsuchihashi S, Ogawara M, Masuda K et al (1997) Purification, characterization, and localization of a novel trypsin-like protease found in the human airway. Am J Respir Cell Mol Biol 16:300–308

    PubMed  CAS  Google Scholar 

  21. Suzue N, Nikawa T, Onishi Y, Yamada C, Hirasaka K, Ogawa T et al (2006) Ubiquitin ligase Cbl-b downregulates bone formation through suppression of IGF-I signaling in osteoblasts during denervation. J Bone Miner Res 21:722–734

    Article  PubMed  CAS  Google Scholar 

  22. Nikawa T, Towatari T, Katunuma N (1992) Purification and characterization of cathepsin J from rat liver. Eur J Biochem 204:381–393

    Article  PubMed  CAS  Google Scholar 

  23. Mishiro T, Nakano S, Takahara S, Miki M, Nakamura Y, Yasuoka S et al (2004) Relationship between cathepsin B and thrombin in rheumatoid arthritis. J Rheumatol 31:1265–1273

    PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Cromlish JA, Seidah NG, Marcinkiewicz M, Hamelin J, Johnson DA, Chretien M (1987) Human pituitary tryptase: molecular forms, NH2-terminal sequence, immunocytochemical localization, and specificity with prohormone and fluorogenic substrates. J Biol Chem 262:1363–1373

    PubMed  CAS  Google Scholar 

  26. Bradding P, Okayama Y, Howarth PH, Church MK, Holgate ST (1995) Heterogeneity of human mast cells based on cytokine content. J Immunol 155:297–307

    PubMed  CAS  Google Scholar 

  27. Little SS, Johnson DA (1995) Human mast cell tryptase isoforms: separation and examination of substrate-specificity differences. Biochem J 307 (Pt 2):341–346

    PubMed  CAS  Google Scholar 

  28. Schwartz LB, Sakai K, Bradford TR, Ren S, Zweiman B, Worobec AS et al (1995) The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest 96:2702–2710

    PubMed  CAS  Google Scholar 

  29. Buckley MG, Walters C, Wong WM, Cawley MI, Ren S, Schwartz LB et al (1997) Mast cell activation in arthritis: detection of alpha- and beta-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci (Lond) 93:363–370

    CAS  Google Scholar 

  30. de Paulis A, Ciccarelli A, Marino I, de Crescenzo G, Marino D, Marone G (1997) Human synovial mast cells. II. Heterogeneity of the pharmacologic effects of antiinflammatory and immunosuppressive drugs. Arthritis Rheum 40:469–478

    Article  PubMed  Google Scholar 

  31. Chen Y, Shiota M, Ohuchi M, Towatari T, Tashiro J, Murakami M et al (2000) Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses. Purification and characterization. Eur J Biochem 267:3189–3197

    Article  PubMed  CAS  Google Scholar 

  32. Peng Q, McEuen AR, Benyon RC, Walls AF (2003) The heterogeneity of mast cell tryptase from human lung and skin. Eur J Biochem 270:270–283

    Article  PubMed  CAS  Google Scholar 

  33. Kiener HP, Baghestanian M, Dominkus M, Walchshofer S, Ghannadan M, Willheim M et al (1998) Expression of the C5a receptor (CD88) on synovial mast cells in patients with rheumatoid arthritis. Arthritis Rheum 41:233–245

    Article  PubMed  CAS  Google Scholar 

  34. Orlean P (1992) Enzymes that recognize dolichols participate in three glycosylation pathways and are required for protein secretion. Biochem Cell Biol 70(6):438–447

    Article  PubMed  CAS  Google Scholar 

  35. Kukuruzinska MA, Lennon K (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med 9:415–448

    PubMed  CAS  Google Scholar 

  36. Brodsky JL (2005) An in vitro assay for the selective endoplasmic reticulum associated degradation of an unglycosylated secreted protein. Methods 35:354–359

    Article  PubMed  CAS  Google Scholar 

  37. Sareneva T, Pirhonen J, Cantell K, Kalkkinen N, Julkunen I (1994) Role of N-glycosylation in the synthesis, dimerization and secretion of human interferon-gamma. Biochem J 303:831–840

    PubMed  CAS  Google Scholar 

  38. Hirooka T, Suganuma N, Furuhashi M, Kitagawa T, Ando H, Kikkawa F et al (1996) Synthesis and release of glycosylated prolactin in transfected cells with human prolactin complementary deoxyribonucleic acid. Endocr J 43:423–428

    Article  PubMed  CAS  Google Scholar 

  39. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE et al (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111:35–41

    Article  PubMed  CAS  Google Scholar 

  40. Matsushima R, Takahashi A, Nakaya Y, Maezawa H, Miki M, Nakamura Y et al (2006) Human airway trypsin-like protease stimulates human bronchial fibroblast proliferation in a protease-activated receptor-2-dependent pathway. Am J Physiol Lung Cell Mol Physiol 290:L385–L395

    Article  PubMed  CAS  Google Scholar 

  41. Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452

    PubMed  CAS  Google Scholar 

  42. Hirano F, Kobayashi A, Hirano Y, Nomura Y, Fukawa E, Makino I (2002) Thrombin-induced expression of RANTES mRNA through protease activated receptor-1 in human synovial fibroblasts. Ann Rheum Dis 61:834–837

    Article  PubMed  CAS  Google Scholar 

  43. Yang YH, Hall P, Little CB, Fosang AJ, Milenkovski G, Santos L et al (2005) Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum 52:1325–1332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged Yukio Higuchi M.D. and Yoshiteru Kawasaki M.D. (Tokushima Prefectural Central Hospital) for collecting the control specimens, and Yuichi Ikeda M.D. and Sachiko Kawano Ph.D. for excellent technical assistance. Financial support for this study was provided by a Grant-in-Aid for Scientific Research (C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsuo Yasui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, S., Mishiro, T., Takahara, S. et al. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin Rheumatol 26, 1284–1292 (2007). https://doi.org/10.1007/s10067-006-0495-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-006-0495-8

Keywords

Navigation