Skip to main content

Advertisement

Log in

Impact of diagenesis and pore aspects on the petrophysical and elastic properties of carbonate rocks from southern Lebanon

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Carbonate rocks form under widely variable depositional settings and are susceptible to complicated diagenetic processes which influence their petrophysical and elastic properties. Understanding the controlling factors on these rock parameters is crucial for the interpretation of sonic logs and seismic reflection profiles. Herein, we collect a large number of carbonate rock samples exposed at southern Lebanon to examine the lithofacies, pore types, diagenetic processes, and their impact on the petrophysical and elastic properties. Collected samples belong to the Upper Cretaceous, Eocene, and Miocene limestone beds and are dominated by bioclastic packstone/wackestone from carbonate shelf deposits which are more susceptible to early diagenesis. Measured porosity is generally moderate to high and varies between 10 and 40%, with a pore system dominated by intraparticle, moldic, and vuggy pores. A small amount of porosity is represented by fractures and interparticle pores. Permeability is very low due to the dominance of isolated intraparticle porosity and small micropores. The measured density and the seismic wave velocities are low due to the moderate/high porosity and the presence of a significant (~ 17%) non-carbonate matrix. Many diagenetic features, such as micritization, cementation, compaction, and dissolution, impacted porosity and permeability differently (dependent on the pore throat size) and led also to the widely variable but generally low seismic wave velocities. The wide scatter observed in the porosity-velocity data cannot be explained solely by the microfacies, pore types, or mineralogy. Instead, we used effective medium theories to explain the variability of seismic velocities with porosity and the petrographic characteristics of the studied rocks. Modeling results show that, in addition to porosity, composition, rock texture, pore types, and the pore aspect ratios have significant impacts on the elastic properties of the studied samples which could explain the observed variations of seismic wave velocities at a given porosity. These findings are crucial for a better characterization of both onshore and offshore carbonate rocks which may host hydrocarbon, groundwater, and geothermal energy resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data is available upon request from authors.

References

  • Abd El-Aal AK, Salah MK, Khalifa MA (2020) Acoustic and strength characterization of Upper Cretaceous dolostones from the Bahariya Oasis, Western Desert, Egypt: The impact of porosity and diagenesis. J Petrol Sci Eng 187:106798. https://doi.org/10.1016/j.petrol.2019.106798

  • Akbar M, Vissarpragada B, Alghamdi AH, Allen D, Herron M, Carnegie A, Dutta D, Olesen J-R, Chourasiya RD, Logan D, Steif D, Netherwood R, Russell SD, Saxena K (2001) A snapshot of carbonate reservoir evaluation. Oilfield Rev 12:20–41

    Google Scholar 

  • Ali A, Wagreich M, Strasser M (2018) Depositional constraints and diagenetic pathways controlling petrophysics of Middle Miocene shallow-water carbonate reservoirs (Leitha limestones), Central Paratethys. Austria-Hungary Mar Petrol Geol 91:586–598

    Article  Google Scholar 

  • Alsuwaidi M, Mohamed AA, Mansurbeg H, Morad S, Alsuwaidi A, Al-Shalabi EW, Gomes J, Al-Ramadan K, Mohammed IQ, Farouk S (2021) Depositional and diagenetic controls on reservoir quality of microporous basinal lime mudstones (Aptian). United Arab Emirates Sed Geol 420:105925

    Article  Google Scholar 

  • Amel H, Jafarian A, Husinec A, Koeshidayatullah A, Swennen R (2015) Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin. Mar Petrol Geol 67:57–71.

  • Anselmetti FS, Eberli GP (1993) Controls on sonic velocity in carbonates. Pure Appl Geophys 141(2–4):287–323

    Article  Google Scholar 

  • Anselmetti FS, Eberli GP (2001) Sonic velocity in carbonates - a combined product of depositional lithology and diagenetic alterations. In: Ginsburg R (Ed.), Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: Results of the Bahamas Drilling Project. SEPM Spec Publ 70:193–216

  • Babasafari AA, Bashir Y, Ghosh DP, Salim AMA, Janjuhah HT, Kazemeini SH, Kordi M (2020) A new approach to petroelastic modeling of carbonate rocks using an extended pore-space stiffness method, with application to a carbonate reservoir in central Luconia, Sarawak, Malaysia. Lead Edge 39(8):592a591–592a510

  • Berryman JG (1980) Long-wavelength propagation in composite elastic media. J Acoust Soc Am 68(6):1809–1831. https://doi.org/10.1121/1.385171

    Article  Google Scholar 

  • Blatt H (1992) Sedimentary petrology. W H Freeman & Company, New York, p 524

    Google Scholar 

  • BouDagher-Fadel M, Clark GN (2006) Stratigraphy, paleoenvironment and paleogeography of Maritime Lebanon: a key to Eastern Mediterranean Cenozoic history. Stratigraphy 3(2):81–118

    Google Scholar 

  • Brigaud B, Vincent B, Durlet C, Deconinck J-F, Blanc P, Trouiller A (2010) Acoustic properties of ancient shallow-marine carbonates: effects of depositional environments and diagenetic processes (Middle Jurassic, Paris Basin, France). J Sediment Res 80(9):791–807

    Article  Google Scholar 

  • Budd DA (2002) The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: a case study from the Paleogene of west-central Florida. USA J Sed Res 72(1):116–128

    Article  Google Scholar 

  • Busch B, Adelmann D, Herrmann R, Hilgers C (2022) Controls on compactional behavior and reservoir quality in a Triassic Buntsandstein reservoir, Upper Rhine Graben. SW Germany Mar Petrol Geol 136:105437

    Article  Google Scholar 

  • Brett CE, Brookfield ME (1984) Morphology, faunas and genesis of ordovician hardgrounds from Southern Ontario, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol 46:233–290

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250

    Google Scholar 

  • Christensen NI, Szymanski DL (1991) Seismic properties and the origin of reflectivity from a classic Paleozoic sedimentary sequence, Valley and Ridge province, southern Appalachians. Geol Soc Am Bull 103:277–289

    Article  Google Scholar 

  • Croizé D, Ehrenberg SN, Bjørlykke K, Renard F, Jahren J (2010) Petrophysical properties of bioclastic platform carbonates: implications for porosity controls during burial. Mar Petrol Geol 27:1765–1774. https://doi.org/10.1016/j.marpetgeo.2009.11.008

    Article  Google Scholar 

  • Dubertret L (1945) Géologie du site de Beyrouth avec carte géologique au 1/20.000

  • Dubertret L (1955) Carte géologique du Liban au 1/200000 avec notice explicative. R_epublique Libanaise, Minist_ere des Travaux Publiques, Beirut, pp. 74

  • Dürrast H, Siegesmund S (1999) Correlation between rock fabrics and physical properties of carbonate reservoir rocks. Int J Earth Sci 88(3):392–408

    Article  Google Scholar 

  • Dvorkin J, Gutierrez MA, Grana D (2014) Seismic reflections of rock properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Eberli GP, Baechle GT, Anselmetti FS, Incze ML (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge 22(7):654–660

    Article  Google Scholar 

  • Ehrenberg SN, Walderhaug O (2015) Preferential calcite cementation of macropores in microporous limestones. J Sed Res 85:780–793

  • Fallah-Bagtash R, Jafarian A, Husinec A, Adabi MH (2020) Diagenetic stabilization of the Upper Permian Dalan Formation, Persian Gulf Basin. J Asian Earth Sci 189:104144

    Article  Google Scholar 

  • Flügel E (2010) Practical use of microfacies: reservoir rocks and host rocks. Microfacies of Carbonate Rocks 877–894

  • Flügel E (2012) Microfacies analysis of limestones. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Friedman GM (1964) Early diagenesis and lithification in carbonate sediments. J Sediment Res 34(4):777–813

    Google Scholar 

  • Gardner G, Gardner L, Gregory A (1974) Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophys 39:770–780

    Article  Google Scholar 

  • Ge Y, Lokier SW, Hoffmann R, Pederson CL, Neuser RD, Immenhauser A (2020) Composite micrite envelopes in the Lagoon of Abu Dhabi and their application for the recognition of ancient firm-to hardgrounds. Mar Geol 423:106141

    Article  Google Scholar 

  • Ghadami N, Rasaei MR, Hejri S, Sajedian A, Afsari K (2015) Consistent porosity–permeability modeling, reservoir rock typing and hydraulic flow unitization in a giant carbonate reservoir. J Petrol Sci Eng 131:58–69

    Article  Google Scholar 

  • Grundtner M-L, Gross D, Samsu A, Linzer H, Misch D, Sachsenhofer R, Scheucher L, Schnitzer S (2016) Diagenesis in Cenomanian clastic reservoir rocks of the Alpine Foreland Basin (Austria). In: 78th EAGE Conference and Exhibition 2016:1–5. https://doi.org/10.3997/2214-4609.201600702

  • Hajikazemi E, Al-Aasm I, Coniglio M (2010) Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, Southwestern Iran. Geol Soc London Spec Publ 330(1):253–272

    Article  Google Scholar 

  • Hashim MS, Kaczmarek SE (2019) A review of the nature and origin of limestone microporosity. Mar Petrol Geol 107:527–554

    Article  Google Scholar 

  • Hawie N, Deschamps R, Nader FH, Gorini C, Müller C, Desmares D, Hoteit A, Granjeon D, Montadert L, Baudin S (2014) Sedimentological and stratigraphic evolution of northern Lebanon since the Late Cretaceous: implications for the Levant margin and basin. Arab J Geosci 7:1323–1349. https://doi.org/10.1007/s12517-013-0914-5

    Article  Google Scholar 

  • Hussein AW, Abd El-Rahman Y (2020) Diagenetic evolution of the Eocene ramp carbonates (a Paradigm from the Nile Valley, Egypt): petrographical and geochemical attributes. Mar Petrol Geol 119:104484

    Article  Google Scholar 

  • Janjuhah HT, Alansari A (2020) Offshore carbonate facies characterization and reservoir quality of Miocene rocks in the southern margin of South China Sea. Acta Geologica Sinica-Eng Ed 94(5):1547–1561

    Article  Google Scholar 

  • Janjuhah HT, Alansari A, Santha PR (2019a) Interrelationship between facies association, diagenetic alteration and reservoir properties evolution in the Middle Miocene carbonate build up, Central Luconia, offshore Sarawak. Malaysia Arab J Sci Eng 44(1):341–356

    Article  Google Scholar 

  • Janjuhah HT, Alansari A, Vintaned JAG (2019b) Quantification of microporosity and its effect on permeability and acoustic velocity in Miocene carbonates, central Luconia, offshore Sarawak. Malaysia J Petrol Sci Eng 175:108–119

    Article  Google Scholar 

  • Janjuhah HT, Salim AMA, Alansari A, Ghosh DP (2018) Presence of microporosity in Miocene carbonate platform, Central Luconia, Offshore Sarawak. Malaysia Arab J Geosci 11(9):204

    Article  Google Scholar 

  • Janjuhah HT, Salim AMA, Ghosh DP, Wahid A (2017) Diagenetic processes and their effect on reservoir quality in Miocene carbonate reservoir, offshore, Sarawak, Malaysia. In: Icipeg 2016. Springer: pp: 545–558

  • Janjuhah HT, Sanjuan J, Alqudah M, Salah MK (2021) Biostratigraphy, depositional and diagenetic processes in carbonate rocks from southern Lebanon: impact on porosity and permeability. Acta Geologica Sinica-Eng Ed 95(5):1668–1683. https://doi.org/10.1111/1755-6724.14695

    Article  Google Scholar 

  • Jiang L (2022) Diagenesis of the San Andres Formation in the Seminole unit in Central Basin platform. West Texas AAPG Bull 106:267–287

    Article  Google Scholar 

  • Jiang L, Pan W, Cai C, Jia L, Pan L, Wang T, Li H, Chen S, Chen Y (2015) Fluid mixing induced by hydrothermal activity in the Ordovician carbonates in Tarim Basin, China. Geofluids 15:483–498. https://doi.org/10.1111/gfl.12125

    Article  Google Scholar 

  • Jiang L, Worden RH, Cai C (2014) Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin. China AAPG Bull 98:947–973. https://doi.org/10.1306/10171312220CorpusID:129056667

    Article  Google Scholar 

  • Jiang L, Worden R, Cai C et al (2018a) Contrasting diagenetic evolution patterns of platform margin dolostone and limestone in the Lower Triassic Feixianguan Formation, Sichuan Basin. China Mar Petrol Geol 92:332–351

    Article  Google Scholar 

  • Jiang L, Worden RH, Cai C, Shen A, Crowley SF (2018b) Diagenesis of an evaporite-related carbonate reservoir in deeply buried Cambrian strata, Tarim Basin. Northwest China AAPG Bull 102:77–102. https://doi.org/10.1306/0328171608517048

    Article  Google Scholar 

  • Jiang L, Worden R, Yang C (2018c) Thermochemical sulfate reduction can improve carbonate reservoir quality. Geochim Cosmochim Acta 223:127–140

    Article  Google Scholar 

  • Jin X, Dou Q, Hou J, Huang Q, Sun Y, Jiang Y, Li T, Sun P, Sullivan C, Adersokan H, Zhang Z (2017) Rock-physics-model-based pore type characterization and its implication for porosity and permeability qualification in a deeply-buried carbonate reservoir, Changxing formation, Lower Permian, Sichuan Basin. China J Petrol Sci Eng 153:223–233. https://doi.org/10.1016/j.petrol.2017.02.003

    Article  Google Scholar 

  • Jin Z, Liang T, Yi S, Wei K, Gao B, Shi L (2020) Depositional environment, diagenetic evolution, and their impact on the reservoir quality of the Carboniferous Kt-II Carbonate in the Zhanazhol Reservoir, Pre-Caspian Basin. Kazakhstan Mar Petrol Geol 117:104411

    Article  Google Scholar 

  • Jones SC (1972) A rapid accurate unsteady-state Klinkenberg permeameter. Soc Petrol Eng 383‒397

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Blackwell Science Ltd., 3rd ed., 281 pp

  • Kenter JA, Podladchikov F, Reinders M, Van der Gaast SJ, Fouke BW, Sonnenfeld MD (1997) Parameters controlling sonic velocities in a mixed carbonate-siliciclastics Permian shelf-margin (upper San Andres formation, Last Chance Canyon, New Mexico). Geophys 62:505–520

    Article  Google Scholar 

  • Kerans C (1988) Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of west Texas: reply. AAPG Bull 72:1160–1183

    Google Scholar 

  • Kershaw S, Munnecke A, Jarochowska E, Young G (2021) Palaeozoic stromatoporoid diagenesis: a synthesis. Facies 67(3):1–43

    Article  Google Scholar 

  • Kleipool L, Reijmer J, Badenas B, Aurell M (2015) Variations in petrophysical properties along a mixed siliciclastic carbonate ramp (Upper Jurassic, Ricla, NE Spain). Mar Petrol Geol 68:158–177

    Article  Google Scholar 

  • Lambert L, Durlet C, Loreau J-P, Marnier G (2006) Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic–Cretaceous): keys for recognition and timing. J Mar Petrol Geol 23(1):79–92

    Article  Google Scholar 

  • Loucks RG (1999) Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bull 83:1795–1834

    Google Scholar 

  • Loucks RG (2001) Modern analogs for paleocave-sediment fills and their importance in identifying paleocave reservoirs. Trans Gulf Coast Assoc Geol Soc 195‒206

  • Martínez-Martínez J, Benavente D, García-del-Cura MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull Eng Geol Env 71(2):263–268

    Article  Google Scholar 

  • Martini E (1970) Standard Paleogene calcareous nannoplankton zonation. Nature 226:560–561

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Morad D, Paganoni M, Al Harthi A, Morad S, Ceriani A, Mansurbeg H, Al Suwaidi A, Al-Aasm IS, Ehrenberg SN (2018) Origin and evolution of microporosity in packstones and grainstones in a Lower Cretaceous carbonate reservoir, United Arab Emirates. Geol Soc London Spec Publ 435(1):47–66

    Article  Google Scholar 

  • Müller C, Higazi F, Hamdan W, Mroueh M (2010) Revised stratigraphy of the Upper Cretaceous and Cenozoic series of Lebanon based on nannofossils. Geol Soc London Spec Publ 341(1):287–303

    Article  Google Scholar 

  • Neto IAL, Misságia RM, Ceia MA, Archilha NL, Oliveira LC (2014) Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory. J Appl Geophys 110:23–33. https://doi.org/10.1016/j.jappgeo.2014.08.013

    Article  Google Scholar 

  • Nurmi R, Standen E (1997) Carbonates, the inside story. Middle East Well Eval Rev 18:28–41

    Google Scholar 

  • Oluwadebi AG, Taylor KG, Dowey PJ (2018) Diagenetic controls on the reservoir quality of the tight gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin, United Kingdom. Sediment Geol 371:55–74

    Article  Google Scholar 

  • Paganoni M, Al Harthi A, Morad D, Morad S, Ceriani A, Mansurbeg H, Al Suwaidi A, Al-Aasm IS, Ehrenberg SN, Sirat M (2016) Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates. Sediment Geol 335:70–92

    Article  Google Scholar 

  • Pei L, Blöcher G, Milsch H, Zimmermann G, Sass I, Li X, Huenges E (2020) Response of Upper Jurassic (Malm) limestone to temperature change: experimental results on rock deformation and permeability. Rock Mech Rock Eng 1‒22

  • Raymer L, Hunt E, Gardner JS (1980) An improved sonic transit time-to-porosity transform. In: SPWLA 21st Annual Logging Symposium. Soc Petrophysicists and Well-Log Analysts

  • Regnet J, David C, Robion P, Menéndez B (2019) Microstructures and physical properties in carbonate rocks: a comprehensive review. Mar Petrol Geol 103:366–376

    Article  Google Scholar 

  • Regnet J, Robion P, David C, Fortin J, Brigaud B, Yven B (2015) Acoustic and reservoir properties of microporous carbonate rocks: implication of micrite particle size and morphology. J Geophys Res Solid Earth 120(2):790–811

    Article  Google Scholar 

  • Rosales I, Pérez-Garcia A (2010) Porosity development, diagenesis and basin modelling of a Lower Cretaceous (Albian) carbonate platform from Northern Spain. Geol Soc London Spec Publ 329(1):317–342

    Article  Google Scholar 

  • Salah MK, Alqudah M, Abd El-Aal AK, Barnes C (2018) Effects of porosity and composition on seismic wave velocities and elastic moduli of Lower Cretaceous rocks, central Lebanon. Acta Geophys 66:867–894. https://doi.org/10.1007/s11600-018-0187-1

    Article  Google Scholar 

  • Salah MK, Alqudah M, David Ch (2020a) Acoustics and petrophysical investigations on upper cretaceous carbonate rocks from northern Lebanon. J Afr Earth Sci 172:103955. https://doi.org/10.1016/j.jafrearsci.2020a.103955

  • Salah MK, Alqudah M, David Ch (2020c) Petrophysical and acoustic assessment of carbonate rocks, Zahle area, central Lebanon. Bull Eng Geol Env 79:5455–5475. https://doi.org/10.1007/s10064-020-01900-0

    Article  Google Scholar 

  • Salah MK, Alqudah M, Monzer AJ, David Ch (2020b) Petrophysical and acoustic characteristics of Jurassic and Cretaceous rocks from central Lebanon. Carbonates Evaporites 35:12. https://doi.org/10.1007/s13146-019-00536-w

    Article  Google Scholar 

  • Salah MK, Janjuhah HT, Sanjuan J (2023) Analysis and characterization of pore system and grain sizes of carbonate rocks from southern Lebanon. J Earth Sci. https://doi.org/10.1007/s12583-020-1057-8

  • Salih M, Reijmer JG, El-Husseiny A (2020) Diagenetic controls on the elastic velocity of the early Triassic Upper Khartam Member (Khuff Formation, central Saudi Arabia). Mar Petrol Geol. https://doi.org/10.1016/j.marpetgeo.2020.104823

    Article  Google Scholar 

  • Soete J, Kleipool LM, Claes H, Hamaekers H, Kele S, Özkul M, Foubert A, Reijmer JJG, Swennen R (2015) Acoustic properties in travertines and their relation to porosity and pore types. Mar Petrol Geol 59:320–335. https://doi.org/10.1016/j.marpetgeo.2014.09.004

    Article  Google Scholar 

  • Sun YF, Berteussen K, Vega S, Eberli GP, Baechle GT, Weger RJ, Massaferro JL, Bracco Gartner GL, Wagner PD (2006) Effects of pore structure on 4D seismic signals in carbonate reservoirs. SEG Tech Program Expand Abstr 3260–3264. https://doi.org/10.1190/1.2370208

  • Swei G, Tucker ME (2012) Impact of diagenesis on reservoir quality in ramp carbonates: Gialo Formation (Middle Eocene), Sirt Basin. Libya J Petrol Geol 35(1):25–47

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Press, Cambridge Univ. https://doi.org/10.1017/CBO9781139167932

    Book  Google Scholar 

  • Thompson DL, Stilwell JD, Hall M (2015) Lacustrine carbonate reservoirs from early Cretaceous rift lakes of western Gondwana: pre-salt coquinas of Brazil and West Africa. Gondwana Res 28:26–51. https://doi.org/10.1016/j.gr.2014.12.005

    Article  Google Scholar 

  • Tomašových A, Gallmetzer I, Haselmair A, Zuschin M (2022) Inferring time averaging and hiatus durations in the stratigraphic record of high-frequency depositional sequences. Sedimentol 69:1083–1118. https://doi.org/10.1111/sed.12936

    Article  Google Scholar 

  • Tucker ME, Wright VP (2009) Carbonate Sedimentology. John Wiley & Sons

    Google Scholar 

  • Van Smeerdijk Hood A, Wallace MW (2012) Synsedimentary diagenesis in a cryogenian reef complex: ubiquitous marine dolomite precipitation. Sediment Geol 255:56–71

    Article  Google Scholar 

  • Varkouhi S, Jaques Ribeiro LM (2021) Bimineralic middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry. The Depositional Record 7(2):344–369

    Article  Google Scholar 

  • Verwer K, Braaksma H, Kenter JAM (2008) Acoustic properties of carbonates: effects of rock texture and implications for fluid substitution. Geophys 73(2):B51–B65

    Article  Google Scholar 

  • Walley CD (1998) Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 145:63–72

    Article  Google Scholar 

  • Wang Z, Hirsche WK, Sedgwick G (1991) Seismic velocities in carbonate rocks. Can Pet Tech 30:112–122

    Google Scholar 

  • Weger RJ, Eberli GP, Baechle GT, Massaferro JL, Sun Y-F (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull 93:1297–1317

    Article  Google Scholar 

  • Wenzhi Z, Suyun H, Wei L, Tongshan W, Youngxin L (2014) Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: a further discussion. Nat Gas Ind B I. https://doi.org/10.1016/j.ngib.2014.10.002

  • Wyllie M, Gregory A, Gardner G (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophys 23:459–493

    Article  Google Scholar 

  • Xi K, Cao Y, Jahren J, Zhu R, Bjørlykke K, Haile BG, Zheng L, Hellevang H (2015) Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin. China Sediment Geol 330:90–107. https://doi.org/10.1016/j.sedgeo.2015.10.007

    Article  Google Scholar 

  • Zolotukhin AB, Ursin J-R (2000) Introduction to petroleum reservoir engineering. Høyskoleforlaget AS - Norwegian Academic Press, Kristiansand, p 402

    Google Scholar 

Download references

Acknowledgements

The authors thank the Editor-in-Chief of the Bulletin of Engineering Geology and the Environment and two anonymous reviewers for their lengthy revisions and fruitful comments which greatly improved the manuscript.

Funding

This study was funded by the URB of the American University of Beirut (Award # 103603; Project # 24687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed K. Salah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Appendix A

Appendix A

The differential effective medium (DEM) theory and the self-consistent approximation (SCA) are used to calculate the effective bulk modulus and Poisson’s ratio of heterogeneous rocks.

The coefficient P and Q used in Equations (1, 2, 3, 4) to calculate the effective young’s modulus and Poisson’s ratio depend on the inclusion shape and the inclusion aspect ratio. The equation used to calculate P and Q for a spherical, penny crack and ellipsoidal inclusions are detailed in A.1, A.2, and A.3, respectively (Mavko et al. 2009).

  • A.1 For a spherical inclusion

    $$P=\frac{{K}_{m}+\frac{4}{3}{\mu }_{m}}{{K}_{i}+\frac{4}{3}{\mu }_{m}}$$
    $$Q=\frac{{\mu }_{m}+{\zeta }_{m}}{{\mu }_{i}+{\zeta }_{m}}$$

where \(\zeta =\frac{\mu }{6}\frac{(9K+8\mu )}{(K+2\mu )}\).

  • A.2 For a penny crack inclusion

    $$P=\frac{{K}_{m}+\frac{4}{3}{\mu }_{i}}{{K}_{i}+\frac{4}{3}{\mu }_{i}+\pi \alpha {\beta }_{m}}$$
    $$Q=\frac{1}{5}\left[1+\frac{8{\mu }_{m}}{4{\mu }_{i}+\pi \alpha ({\mu }_{m}+2{\beta }_{m})}+2\frac{{K}_{i}+\frac{2}{3}({\mu }_{i}+{\mu }_{m})}{{K}_{i}+\frac{4}{3}{\mu }_{i}+\pi \alpha {\beta }_{m}}\right]$$

    where \(\beta =\mu \frac{\left(3K+\mu \right)}{(3K+4\mu )}\) and \(\alpha\) is the crack aspect ratio.

  • A.3 For an ellipsoidal inclusion (Berryman 1980)

  • $$P=\frac{1}{3}{T}_{iijj}$$
    $$Q=\frac{1}{5}({T}_{ijij}-\frac{1}{3}{T}_{iijj})$$

    where

    $${T}_{iijj}=3\frac{{F}_{1}}{{F}_{2}}$$
    $${T}_{ijij}-\frac{1}{3}{T}_{iijj}=\frac{2}{{F}_{3}}+\frac{1}{{F}_{4}}+\frac{{F}_{4}{F}_{5}+{F}_{6}{F}_{7}-{F}_{8}{F}_{9}}{{F}_{2}{F}_{4}}$$

    where

$${F}_{1}=1+A\left[\frac{3}{2}\left(\kern0.1500emf+\theta \right)-R\left(\frac{3}{2}f+\frac{5}{2}\theta -\frac{4}{3}\right)\right]$$
$$\begin{aligned}F_2=1&+A\left[1+\frac32\left(f+\theta\right)-\frac12R\left(3f+5\theta\right)\right]+B\left(3-4R\right)\\&+\frac12A(A+3B)(3-4R)\left[f+\theta-R(f-\theta+2\theta^2)\right]\end{aligned}$$
$${F}_{3}=1+A\left[1-\left(f+\frac{3}{2}\theta \right)+R\left(f+\theta \right)\right]$$
$${F}_{4}=1+\frac{1}{4}A\left[\kern0.1500emf+3\theta -R\left(\kern0.1500emf-\theta \right)\right]$$
$${F}_{5}=A\left[-f+R\left(f+\theta -\frac{4}{3}\right)\right]+B\theta (3-4R)$$
$${F}_{6}=1+A\left[1+f-R\left(f+\theta \right)\right]+B(1-\theta )(3-4R)$$
$${F}_{7}=2+\frac{1}{4}A\left[3f+9\theta -R\left(3f+5\theta \right)\right]+B\theta (3-4R)$$
$$F_8=A\left[1-2R+\frac12f\left(R-1\right)+\frac12\theta\left(5R-3\right)\right]+B(1-\theta)(3-4R)$$
$${F}_{9}=A\left[\left(R-1\right)f-R\theta \right]+B\theta (3-4R)$$
$$A=\frac{{\mu }_{i}}{{\mu }_{m}}-1$$
$$B=\frac{1}{3}\left(\frac{{K}_{i}}{{K}_{m}}-\frac{{\mu }_{i}}{{\mu }_{m}}\right)$$
$$R=\frac{(1-2{\nu }_{m})}{2(1-{\nu }_{m})}$$
$$f=\frac{{\alpha }^{2}}{1-{\alpha }^{2}}(2\theta -2)$$
$$\theta=\left\{\begin{array}{c}\frac\alpha{\left(\alpha^2-1\right)^{3/2}}\left[\alpha\left(\alpha^2-1\right)^{1/2}-\cosh^{-1}\alpha\right],for\;prolate\;spheroid\;i.e.,\alpha>1\\\frac\alpha{\left(1-\alpha^2\right)^{3/2}}\left[\cosh^{-1}\alpha-\alpha\left(1-\alpha^2\right)^{1/2}\right],for\;oblate\;spheroid\;i.e.,\alpha<1\end{array}\right.$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M.K., Janjuhah, H.T., Sanjuan, J. et al. Impact of diagenesis and pore aspects on the petrophysical and elastic properties of carbonate rocks from southern Lebanon. Bull Eng Geol Environ 82, 67 (2023). https://doi.org/10.1007/s10064-023-03088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03088-5

Keywords

Navigation