Skip to main content
Log in

Tools to simulate changes in hydraulic flow systems in complex geologic settings affected by tunnel excavation

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Geotechnical problems during and after tunnel construction are often related to groundwater circulation. In tunnelling projects, however, groundwater flow systems are often only partly known. This uncertainty is manifested by the typically scarce hydraulic data that limits the understanding of subsurface hydrogeological processes. In particular, there is a general lack of data documenting groundwater flow changes caused by tunnelling. The present paper presents a concept involving an iterative understanding of subsurface hydrogeological systems influenced by tunnelling. A major challenge of our approach consists of integrating complex geological geometries from a 3D geological model (GOCAD) into a numerical groundwater flow model (COMSOL Multiphysics). The starting point is a 3D geological model representing a regional tectonic system located in the Jura Mountains in Switzerland. This geological model is transferred into regional and local-scale groundwater flow models. Due to the lack of hydrogeological data, a 3D view of geological–hydrogeological systems is often required to respond to groundwater-induced geotechnical problems in tunnelling. Numerical groundwater flow models make it possible to perform sensitivity analysis and to test how boundary conditions and hydraulic property distributions influence calculated groundwater flow regimes. In addition, our approach enables testing the effects of changes of hydraulic regimes due to tunnel excavation at different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Parasolid is a geometric modelling kernel for use in 3D computer graphics (Siemens PLM software).

  2. ACIS is a geometric modelling kernel (spatial corporation).

  3. STEP (standard for the exchange of product model data), ISO standard for the computer-interpretable representation and exchange.

  4. IGES (Initial Graphics Exchange Specification), file format that allows the digital exchange of information among computer-aided design (CAD) systems.

  5. VDA-FS is a CAD data exchange format for the transfer of surface models from one CAD system to another.

  6. A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, with no overlaps and no gaps.

References

  • Anagnostou G, Pimentel E, Serafeimidis K (2010) Swelling of sulphatic claystones—some fundamental questions and their practical relevance. Geomech Tunn 3(5):567–572

    Article  Google Scholar 

  • Becker A (2000) The Jura mountains—an active foreland fold-and-thrust belt? Tectonophysics 321:381–406. doi:10.1016/S0040-1951(00)00089-5

    Article  Google Scholar 

  • Burkard M, Sommaruga A (1998) Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt. Geol Soc Lond Spec Publ 134(1):279–298. doi:10.1144/GSL.SP.1998.134.01.13

    Article  Google Scholar 

  • Butscher C (2012) Steady-state groundwater inflow into a circular tunnel. Tunn Undergr Sp Tech 32:158–167. doi:10.1016/j.tust.2012.06.007

    Article  Google Scholar 

  • Butscher C (2015) Hydrogeological controls on the swelling of clay-sulfate rocks in tunneling. In: Engineering geology for society and territory, applied geology for major engineering projects, vol 6, pp 435–438. Springer, Berlin. doi:10.1007/978-3-319-09060-3_75

  • Butscher C, Einstein HH, Huggenberger P (2011a) Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resour Res. doi:10.1029/2011wr011023

    Google Scholar 

  • Butscher C, Huggenberger P, Zechner E (2011b) Impact of tunneling on regional groundwater flow and implications for swelling of clay-sulfate rocks. Eng Geol 117:198–206. doi:10.1016/j.enggeo.2010.10.018

    Article  Google Scholar 

  • Butscher C, Huggenberger P, Zechner E, Einstein HH (2011c) Relation between hydrogeological setting and swelling potential of clay-sulfate rocks in tunneling. Eng Geol 122:204–214. doi:10.1016/j.enggeo.2011.05.009

    Article  Google Scholar 

  • COMSOL (2015) Release Highlights 5.2, COMSOL Multiphysics®. Stockholm

  • Diebold P, Noack T (1997) Late Paleozoic troughs and Tertiary structures in the eastern folded Jura. In: Heitzmann P, Lehner P, FPfiffner AO, Steck A (eds) Deep structure of the Swiss Alps. Birkhäuser Verlag, Basel, p 380

  • El Tani M (2003) Circular tunnel in a semi-infinite aquifer. Tunn Undergr Sp Tech 18:49–55. doi:10.1016/S0886-7798(02)00102-5

    Article  Google Scholar 

  • Farhadian H, Katibeh H, Huggenberger P, Butscher C (2016) Optimum model extent for numerical simulation of tunnel inflow in fractured rock. Tunn Undergr Sp Tech 60:21–29. doi:10.1016/j.tust.2016.07.014

    Article  Google Scholar 

  • Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variation. Water Resour Res 3:623–634. doi:10.1029/WR003i002p00623

    Article  Google Scholar 

  • Groshong RH (1999) 3D structural geology: a practical guide to surface and subsurface map interpretation. Springer, Berlin

    Book  Google Scholar 

  • Huggenberger P, Butscher C (2012) Influence of groundwater flow on the swelling of the Gipskeuper formation in the Chienberg tunnel. Bundesamt für Strassen,

  • Huggenberger P, Zechner E, Dresmann H (2012) Einfluss der Grundwasserströmung auf das Quellverhalten des Gipskeupers im Belchentunnel (influence of groundwater flow on swelling in the Gipskeuper of the Belchentunnel). Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Strassen ASTRA, Bern

    Google Scholar 

  • Huggenberger P, Butscher C, Dresmann H, Scheidler S (2016) Einfluss von geologisch-hydrologischen Randbedingungen und baulichen Massnahmen auf das Quellen von Ton-Sulfat-Gesteinen am Belchentunnel (Role of hydrogeology and tunnel construction frame on swelling of anhydrite claystone; Belchentunnel). Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Strassen ASTRA, Bern

    Google Scholar 

  • Kolymbas D, Wagner P (2007) Groundwater ingress to tunnels—the exact analytical solution. Tunn Undergr Sp Tech 22:23–27. doi:10.1016/j.tust.2006.02.001

    Article  Google Scholar 

  • Laubscher H (1992) Jura Kinematics and the Molasse Basin. Eclogae Geol Helv 85:653–675

    Google Scholar 

  • Lei SZ (1999) An analytical solution for steady flow into a tunnel. Ground Water 37:23–26. doi:10.1111/j.1745-6584.1999.tb00953.x

    Article  Google Scholar 

  • Liu J, Liu D, Song K (2015) Evaluation of the influence caused by tunnel construction on groundwater environment: a case study of tongluoshan tunnel, China. Adv Mater Sci Eng. doi:10.1155/2015/149265

    Article  Google Scholar 

  • Marechal JC, Lanini S, Aunay B, Perrochet P (2014) Analytical solution for modeling discharge into a tunnel drilled in a heterogeneous unconfined aquifer. Groundwater 52:597–605. doi:10.1111/gwat.12087

    Article  Google Scholar 

  • Meyer M, Nyfeler J (2007) Nationalstrasse N2, Sanierungstunnel Belchen STB, Geologisch-geotechnischer Bericht (incl. Bericht, geologische Karte und Profile)

  • Park KH, Owatsiriwong A, Lee JG (2008) Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit. Tunn Undergr Sp Tech 23:206–209. doi:10.1016/j.tust.2007.02.004

    Article  Google Scholar 

  • Perrochet P (2005a) Confined flow into a tunnel during progressive drilling: an analytical solution. Ground Water 43:943–946. doi:10.1111/j.1745-6584.2005.00108.x

    Google Scholar 

  • Perrochet P (2005b) A simple solution to tunnel or well discharge under constant drawdown. Hydrogeol J 13:886–888. doi:10.1007/s10040-004-0355-z

    Article  Google Scholar 

  • Ross M, Aitssi L, Martel R, Parent M (2005) From geological to groundwater flow models: an example of inter-operability for semi-regular grids. In Three-dimensional geologic mapping for groundwater applications, workshop extended abstracts, Salt Lake City, Utah

  • Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684–721

    Article  Google Scholar 

  • Toth J (2009) Gravity flow of groundwater: a geologic agent gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge University Press, Cambridge, pp 91–127. doi:10.1017/Cbo9780511576546.005

    Book  Google Scholar 

  • Tsang CF, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min 42:109–125. doi:10.1016/j.ijrmms.2004.08.003

    Article  Google Scholar 

  • Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. Geological Survey professional paper 1001. U.S. Govt. Print. Off., Washington

  • Zanchi A, Francesca S, Stefano Z, Simone S, Graziano G (2009) 3D reconstruction of complex geological bodies: examples from the Alps. Comput Geosci 35:49–69. doi:10.1016/j.cageo.2007.09.003

    Article  Google Scholar 

  • Zhang E, Jaramillo CA, Feldsher TB (2007) Transient simulation of groundwater flow for tunnel construction using time-variable boundary condition. In American Geophysical Union, Fall Meeting

  • Zijl W (1999) Scale aspects of groundwater flow and transport systems. Hydrogeol J 7:139–150. doi:10.1007/s100400050185

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Einstein for his constructive comments and advice during the project. This research was funded by the Swiss Federal Roads Office (ASTRA) under project no. FGU 2012/002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Scheidler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheidler, S., Huggenberger, P., Butscher, C. et al. Tools to simulate changes in hydraulic flow systems in complex geologic settings affected by tunnel excavation. Bull Eng Geol Environ 78, 969–980 (2019). https://doi.org/10.1007/s10064-017-1113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1113-5

Keywords

Navigation