Skip to main content

Advertisement

Log in

Seismic site effects in the central zone of Monterrey Metropolitan Area (northeast Mexico) from a geotechnical multidisciplinary assessment

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Prediction of the ground shaking response requires data expressed in terms of soil dynamic properties. Based on the analysis of surficial geology, geotechnical borehole data, seismic refraction (VS) and microtremors (H/V) surveys, we have developed a qualitative evaluation of local ground response to earthquakes in the Monterrey Metropolitan Area (MMA), the main urban and economic hub in northern Mexico. The results provide a detailed geotechnical model for the central zone of the MMA. Although such information is not yet complete for the MMA region, an initial approach has been developed in order to estimate the distribution of damage associated with expected moderate earthquakes. An empirical correlation is introduced to obtain VS as a function of standard penetration test blow counts (SPTN). According to the results, the central-southern part of the study area might experience higher amplifications of ground shaking produced by moderate seismicity because the larger thicknesses of alluvial sediments are deposited there. The 2D geotechnical model proposed would be very useful in making decisions regarding planning or land use, deployment of protocols of rapid response and for producing detailed microzonation maps for those zones with similar geological features as the MMA in northeast Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alva Niño E (1995) Datos base y metodología para la elaboración de una carta ingeniero-geológica de la zona Metropolitana de Monterrey, N.L./México. BA thesis, Universidad Autónoma de Nuevo León

  • Anbazhagan P, Kumar A, Sitharam TG (2013) Seismic site classification and correlation between standard penetration test N value and shear wave velocity for Lucknow City in Indo-Gangetic Basin. Pure Appl Geophys 170(3):299–318

    Article  Google Scholar 

  • Aranda-Goméz JJ, Housh TB, Luhr JF, Henry CD, Becker T, Chávez-Cabello G (2005) Reactivation of the San Marcos fault during mid-to-late Tertiary extension, Chihuahua, Mexico. In: Anderson TH, Nourse JA, McKee JW, Steiner MB (eds) The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. Geological Society of America Special Paper 393, pp 509–521

  • ASTM International (2011a) ASTM D1586-11. Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM International (2011b) ASTM D2487-11. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken, PA

    Google Scholar 

  • Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179

    Article  Google Scholar 

  • Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra 10:617–653

    Article  Google Scholar 

  • Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17:465–474

    Article  Google Scholar 

  • Brandenberg SJ, Bellana N, Shantz T (2010) Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dyn Earthq Eng 30:1026–1035

    Article  Google Scholar 

  • Dickinson WR, Lawton TF (2001) Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geol Soc Am Bull 113(9):1142–1160

    Article  Google Scholar 

  • Doser DI (1987) The 16 August 1931 Valentine, Texas, earthquake: evidence for normal faulting in west Texas. Bull Seismol Soc Am 77:2005–2017

    Google Scholar 

  • Doser DI, Rodríguez J (1993) The seismicity of Chihuahua, Mexico, and the 1928 Parral earthquake. Phys Earth Planet Inter 78:97–104

    Article  Google Scholar 

  • Eguiluz de Antuñano S, Aranda García M, Marrett R (2000) Tectónica de la Sierra Madre Oriental, México. Bol Soc Geol Mex 53:1–26

    Google Scholar 

  • Erdik M, Şeşetyan K, Demircioğlu MB, Hancılar U, Zülfikar C (2011) Rapid earthquake loss assessment after damaging earthquakes. Soil Dyn Earthq Eng 31:247–266

    Article  Google Scholar 

  • Esfehanizadeh M, Nabizadeh F, Yazarloo R (2015) Correlation between standard penetration (NSPT) and shear wave velocity (VS) for young coastal sands of the Caspian Sea. Arab J Geosci 8(9):7331–7341

    Article  Google Scholar 

  • Fabbrocino S, Lanzano G, Forte G, de Magistris FS, Fabbrocino G (2015) SPT blow count vs. shear wave velocity relationship in the structurally complex formations of the Molise region (Italy). Eng Geol 187:84–97

    Article  Google Scholar 

  • Field E, Jacob K (1993) The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett 20:2925–2928

    Article  Google Scholar 

  • Frohlich C, Davis SD (2002) Texas earthquakes. Springer, 277 pp

  • Fumal TE, Tinsley JC (1985) Mapping shear-wave velocities of near-surface geologic materials. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles region. U.S. Geological Survey Professional Paper 1360, pp 127–149

  • Galván-Ramírez IN, Montalvo-Arrieta JC (2008) The historical seismicity and prediction of ground motion in northeast Mexico. J S Am Earth Sci 25:37–48

    Article  Google Scholar 

  • García-Acosta V, Suárez-Reynoso G (1996) Los sismos en la historia de México. Universidad Nacional Autónoma de México, 718 pp

  • Gautam D (2016) Empirical correlation between uncorrected standard penetration resistance (N) and shear wave velocity (Vs) for Kathmandu Valley, Nepal. Geomat Nat Haz Risk 1–13

  • Ghazi A, Moghadas NH, Sadeghi H, Ghafoori M, Lashkaripur GR (2015) Empirical relationships of shear wave velocity, SPT-N value and vertical effective stress for different soils in Mashhad, Iran. Ann Geophys 58(3):1–12

    Google Scholar 

  • Gómez-Arredondo CM, Montalvo-Arrieta JC, Iglesias-Mendoza A, Espindola-Castro VH (2016) Relocation and seismotectonic interpretation of the seismic swarm of August–December of 2012 in the Linares area, northeastern Mexico. Geofis Int 55(2):95–106

    Google Scholar 

  • Gosar A (2010) Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Nat Hazards Earth Syst Sci 10:761–772

    Article  Google Scholar 

  • Hanumantharao C, Ramana GV (2008) Dynamic soil properties for microzonation of Delhi, India. J Earth Syst Sci 117:719–730

    Article  Google Scholar 

  • Holzer TL, Bennett MJ, Noce TE, Tinsley JC (2005) Shear-wave velocity of surficial geologic sediments in northern California: statistical distributions and depth dependence. Earthquake Spectra 21(1):161–177

    Article  Google Scholar 

  • Ibs-von Seht M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. B Seismol Soc Am 89:250–259

    Google Scholar 

  • Iyisan R (1996) Correlations between shear wave velocity and in-situ penetration test results. Digest 96:371–374

    Google Scholar 

  • Jafari MK, Shafiee A, Razmkhah A (2002) Dynamic properties of fine grained soils in south of Tehran. J Seismol Earthq Eng 4:25–35

    Google Scholar 

  • Jibson RW, Harp EL (2012) Extraordinary distance limits of landslides triggered by the 2011 mineral, Virginia, earthquake. Bull Seismol Soc Am 102(6):2368–2377

    Article  Google Scholar 

  • Kanai (1966) Conference on cone penetrometer. The Ministry of Public Works and Settlement, Ankara, Turkey

  • Kirar B, Maheshwari BK, Muley P (2016) Correlation between shear wave velocity (vs) and SPT resistance (N) for Roorkee region. Int J Geosynth Ground Eng 2(9):1–11

    Google Scholar 

  • Lee CT, Tsai BR (2008) Mapping VS30 in Taiwan. Terr Atmos Ocean Sci 19(6):671–682

    Article  Google Scholar 

  • Lermo J, Chávez-García FJ (1994) Are microtremors useful in site response evaluation? Bull Seismol Soc Am 84:1350–1364

    Google Scholar 

  • Liam Finn WD, Onur T, Ventura CE (2004) Microzonation: developments and applications. In: Ansal A (ed) Recent advances in earthquake geotechnical engineering and microzonation. Springer, pp 3–26

  • Maheswari RU, Boominathan A, Dodagoudar GR (2010) Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soils. Geotech Geol Eng 28:119–137

    Article  Google Scholar 

  • Marto A, Choy Soon T, Kasim F, Suhatril M (2013) A correlation of shear wave velocity and standard penetration resistance. Electron J Geotech Eng 18:463–471

    Google Scholar 

  • McKee JW, Jones NW, Long LE (1984) History of recurrent activity along a major fault in northeastern Mexico. Geology 12:103–107

    Article  Google Scholar 

  • McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull 102:593–614

    Article  Google Scholar 

  • Montalvo Arrieta JC, de León Gómez H, Valdés González C (2006) LNIG: Nueva estación sísmica digital en el noreste de México. Ingenierías 9:17–24

    Google Scholar 

  • Montalvo-Arrieta JC, Cavazos-Tovar P, de León IN, Alva-Niño E, Medina-Barrera F (2008) Mapping seismic site classes in Monterrey Metropolitan Area, northeast Mexico. Boletín Sociedad Geológica Mexicana 60(2):147–157

    Article  Google Scholar 

  • Montalvo-Arrieta JC, Sosa-Ramírez RL, Paz-Martínez EG (2015) Relationship between MMI data and ground shaking in the state of Nuevo León, Northeastern Mexico. Seismol Res Lett 86(5):1489–1495

    Article  Google Scholar 

  • Muehlberger WR, Belcher RC, Goetz LK (1978) Quaternary faulting in trans-Pecos Texas. Geology 6:337–340

    Article  Google Scholar 

  • Natali SG, Sbar ML (1982) Seismicity in the epicentral region of the 1887 northeastern Sonoran earthquake, Mexico. Bull Seismol Soc Am 72:181–196

    Google Scholar 

  • Ortiz-Urbilla A, Tolson G (2004) Interpretación estructural de una sección sísmica en la región Arcabuz-Culebra de la Cuenca de Burgos, NE de México. Revista Mexicana de Ciencias Geológicas 21:226–235

    Google Scholar 

  • Padilla y Sánchez RJ (1985) Las estructuras de la Curvatura de Monterrey, Estados de Coahuila, Nuevo León, Zacatecas y San Luis Potosí. Universidad Autónoma de México, Revista 6:1–20

    Google Scholar 

  • Panza GF, Irikura K, Kouteva M, Peresan A, Wang Z, Saragoni R (2011) Advanced seismic hazard assessment. Pure App Geophys 168:1–9

    Article  Google Scholar 

  • Ramos-Zúñiga LG, Medina-Ferrusquía HC, Montalvo-Arrieta JC (2012a) Patrones de Sismicidad en la Curvatura de Monterrey, Noreste de México. Revista Mexicana de Ciencias Geológicas 29(2):572–589

    Google Scholar 

  • Ramos-Zúñiga LG, Montalvo-Arrieta JC, Pérez-Campos X, Valdés-González C (2012b) Seismic characterization of station LNIG as a reference site in Northeast Mexico. Geofis Int 51:185–195

    Google Scholar 

  • Rodríguez-Marek A, Bray JD, Abrahamson NA (2001) An empirical geotechnical seismic site response procedure. Earthquake Spectra 17:65–87

    Article  Google Scholar 

  • Ruíz-Martínez MA, Werner J (1997) Research into the quaternary sediments and climatic variations in NE Mexico. Quatern Int 43–44:145–151

    Article  Google Scholar 

  • Sánchez-Sesma FJ (1987) Site effects on strong ground motion. Soil Dyn Earthq Eng 6:124–132

    Article  Google Scholar 

  • Sánchez-Sesma FJ, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo MA, Rodríguez-Castellanos A (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int 186:221–225

    Article  Google Scholar 

  • Site Effects Assessment Using Ambient Excitations (SESAME) European research project WP12 (2005) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. Deliverable D23.12

  • Stewart JP, Liu AH, Choi Y (2003) Amplification factors for spectral acceleration in tectonically active regions. Bull Seismol Soc Am 93:332–352

    Article  Google Scholar 

  • Technical Committee for Earthquake Geotechnical Engineering, TC4, of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) (1999) Manual for zonation on seismic geotechnical hazards (revised version). Japanese Geotechnical Society, 209 pp

  • Tinsley JC, Fumal TE (1985) Mapping quaternary sedimentary deposits for areal variations in shaking response. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles Region. U.S. Geological Survey Professional Paper 1360, pp 101–126

  • Trifunac MD, Brady AG (1976) Correlations of peak acceleration, velocity and displacement with earthquake magnitude, distance and site conditions. Earthquake Eng Struc Dyn 4:455–471

    Article  Google Scholar 

Download references

Acknowledgements

The first author (JAS-J) received a scholarship from Consejo Nacional de Ciencia y Tecnología (CONACYT). We are grateful to Martin Gordon Culshaw and the two anonymous reviewers for their critical remarks that helped to greatly improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Montalvo-Arrieta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas-Jasso, J.A., Montalvo-Arrieta, J.C., Alva-Niño, E. et al. Seismic site effects in the central zone of Monterrey Metropolitan Area (northeast Mexico) from a geotechnical multidisciplinary assessment. Bull Eng Geol Environ 78, 483–495 (2019). https://doi.org/10.1007/s10064-017-1065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1065-9

Keywords

Navigation