Skip to main content
Log in

Seismically induced slope instability maps validated at an urban scale by site numerical simulations

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Maps of seismically induced instability at the urban scale can be drawn by means of geographic information system (GIS) tools that integrate different information layers such as (1) a landslide inventory; (2) a digital elevation model (DEM); (3) geo-hydro-mechanical site characterization, and (4) measured peaks or integral parameters at seismic stations. These maps are used to guide planning activities and emergency actions, but their main limitation is typically the lack of reliable analyses or calibrations. In this study, a possible method is proposed to control and increase the overall reliability of an hazard scenario map of earthquake-induced slope instability. The procedure can be summarized in the following steps: (1) GIS tools are used to describe the spatial distribution of the hydro-mechanical properties of the surface lithologies; (2) seismically induced instability maps of permanent displacements are drawn from the preceding information layers combined with seismic parameters spatially propagated by means of spatial interpolation tools; (3) point dynamic and stability numerical analyses are carried out by means of a commercial finite element method (FEM) code (e.g., Geostudio2004) to calculate permanent displacement by the Newmark’s method along representative cross-sections. The numerical analyses are used to calculate a “depth factor”, which can be considered as the contribution of the seismic local amplification to the surface calculations addressed by GIS tools. The ratio between the results drawn from the two approaches (GIS-based and FEM-based implementing Newmark's method) can be assumed as a scale factor related to the in-depth site-specific geo-lithotechnical characters to be addeded to GIS maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ambraseys NN, Menu JM (1988) Earthquake-induced ground displacements. J Earthq Eng Struct Dyn 16:985–1006

    Article  Google Scholar 

  • Ambraseys NN, Srbulov M (1995) Attenuation of earthquake-induced displacements. J Earthq Eng Struct Dyn 23:467–487

    Article  Google Scholar 

  • Bray JD, Travasarou T (2007) Simplified procedure for estimating earthquake-induced deviatoric slope displacements. J Geotech Geoenvir Engrg 133(4):381–392

    Article  Google Scholar 

  • Calcaterra D, Parise M (2001) The contribution of historical information in the assessment of landslide hazard. In: Glade T, Albini P, Frances F (eds) The use of historical data in natural hazard assessments, advances in natural and Technological hazards research, 17, Kluwer Academic Publishers, p 201–217

  • Calcaterra D, Parise M, Palma B (2003) Combining historical and geological data for the assessment of the landslide hazard: a case study from Campania, Italy. Nat Hazards Earth Syst Sci 3(1/2):3–16

    Article  Google Scholar 

  • Cotecchia V, Del Prete M, Tafuni N (1986) Effects of earthquake of 23rd November 1980 on pre-existing landslides in the Senerchia area (southern Italy). Proc Int Symp on Eng Geol Probl Seismic Areas IAEG April 13–19, Bari Italy 4: 4:177–198

    Google Scholar 

  • Crespellani T, Ghinelli A, Madiai C, Vannucchi G (1990) Analisi di stabilità dei pendii naturali in condizioni sismiche. Riv Ital Geotec 24(2):49–74

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide Types and Processes, Special Report. Transp Res Board Nat Acad Sci 247:36–75

    Google Scholar 

  • D’Elia B (1992) Dynamic aspects of a landslide reactivated by the November 23, 1980 Irpinia earthquake (Southern Italy). Proc. of the French-Italian Conference on slope stability in seismic Areas, Bordighera, p 25–32

  • D’Elia B (1998) Stabilità dei pendii in zona sismica. Atti del corso di Ingegneria geotecnica sismica, Pesaro. (in italian, hard copy only)

  • De Stefano A (2009) Studio geologico-tecnico finalizzato all’accertamento delle condizioni generali di stabilità in funzione del rischio frane, sismico e delle caratteristiche geomeccaniche dei litotipi fondali presenti nel territorio del comune di Castelfranci per la costruzione di un anfiteatro. Relazione geologica-tecnica. (in Italian, hardcopy only)

  • De Vita P, Focareta M, Guadagno FM (2001) Il fenomeno franoso della località Chianiello nel Comune di Castelfranci (AV). Memorie Società Geologica Italiana 56:61–70

    Google Scholar 

  • DM (2008) Decreto del Ministero Infrastrutture 14 gennaio 2008. Pubblicato su S.O. n. 30 alla G.U. 4 febbraio 2008, n.29. Norme tecniche per le Costruzioni. Ministero delle Infrastrutture, Ministero dell’Interno, Dipartimento della Protezione Civile. Tipografia del Genio Civile (DEI)

  • Dramis F, Prestininzi A, Cognini L, Genevois R, Lombardi S (1982) Surface fractures connected with the southern Italy earthquake (November 1980)—distribution and geomorphological implications. Proc 4th Int Congr of IAEG December 10–15 New Delhi India 8:55–55

    Google Scholar 

  • EPRI (1993). Guidelines for Determining Design Ground Motions. EPRI TR-102293

  • Esri Italia (2010) ArcGIS for desktop (www.esritalia.it)

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geo 102:99–111

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geo 102:85–98

    Article  Google Scholar 

  • Franklin AG, Chang FK (1977) Earthquake resistance of earth and rock-fill dams: US. Army Corps of Engineers Waterways Experiment Station. Miscellaneous Paper S-71-17, 59 pp

  • GEO-SLOPE International (2004) GeoStudio suite (http://www.geo-slope.com/)

  • Glade T, Albini P, Frances F (eds) (2001) The Use of Historical Data in Natural Hazard Assessments. Advances in Natural and Technological Hazards Research, 17, Kluwer Academic Publishers

  • Goodman RE, Seed HB (1966) Earthquake-induced displacements in sand enbankments. Am Soc Civil Eng Proc J Soil Mech Found Div 92(SM2):125–146

    Google Scholar 

  • Gringeri Pantano F, Nicoletti P, Parise M (2002) Historical and geological evidence for the seismic origin of newly recognized landslides in south-eastern Sicily, and its significance in terms of hazard. Environ Manag 29(1):116–131

    Article  Google Scholar 

  • Guerriero L, Revellino P, Coe JA, Focareta M, Grelle G, Albanese V, Corazza A, Guadagno FM (2013) Multi-temporal maps of the Montaguto earth flow in Southern Italy from 1954 to 2010. J Maps 9(1):135–145

    Article  Google Scholar 

  • Harp EL, Wilson RC (1995) Shaking intensity thresholds for rock falls and slides: evidence from the 1987 Whittier Narrows and Superstition Hills earthquake strong motion records. B Seismol Soc Am 85(6):1739–1757

    Google Scholar 

  • Hsieh SY, Lee CT (2011) Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Eng Geol 122(1–2):34–42

    Article  Google Scholar 

  • Huang YH (1983) Stability Analysis of Earth Slopes. Van Nostrand Reinhold NY (ed)

  • Hutchinson JN, Prete M (1985) Landslide at calitri, southern apennines, reactivated by the earthquake of 23rd November 1980. Geologia Appl ed Idrogeol 20(1):9–28

    Google Scholar 

  • Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17

    Google Scholar 

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218

    Article  Google Scholar 

  • Jibson RW, Keefer DK (1993) Analysis of the seismic origin. of landslides examples from the New Madrid seismic zone. Geolo Soc Am Bull 105:521–536

    Article  Google Scholar 

  • Jibson RW, Harp EL, Michael JM (1998) A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area US Geological Survey Open-File Report 98–113, 17 p

  • Keefer DK (1984) Landslides caused by earthquakes. Bull Geol Soc Am 95:406–421

    Article  Google Scholar 

  • Keefer DK, Wilson RC (1989) Predicting earthquake- induced landslides, with emphasis on arid and semi-arid environments. In: Sadler, P.M., Morton, D.M. (Eds.), Landslides in a semi-arid environment with emphasis on the Inland Valleys of Southern California, Inland Geological Society of Southern California Publications Vol. 2, Part 1. Inland Geological Society of Southern California, Riverside CA, p 118–149

  • Liotti G (2010) Aggiornamento indagini geognostiche-geotecniche. Valutazioni sulle indagini effettuate e di quelle realizzate in precedenza a Castelfranci (AV). (in italian, hardcopy only)

  • Locati M, Camassi R, Stucchi M (2011) Database Macrosismico Italiano versione DBMI11

  • Luzi L, Pergalani F (1996) Applications of statistical and GIS techniques to slope instability zonation (1:50000 Fabriano geologic map). Soil Dyn Earthq Eng 15:83–94

    Article  Google Scholar 

  • Luzi L, Pergalani F (2000) A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dyn Earthq Eng 20(5–8):301–313

    Article  Google Scholar 

  • Menardi Noguera A, Rea G (2000) Deep structure of the Campanian-Lucanian Arc (Southern Apennine, Italy). Tectonophysics 324:239–265

    Article  Google Scholar 

  • Monaco L, Capobianco L (2007) Relazione Geotecnica. Lavori di messa in sicurezza del piano viabile, tratto antistante Cimitero Comunale Castelfranci (AV). (in Italian, hardcopy only)

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160

    Article  Google Scholar 

  • Parise M (2000) Erosion rates from seismically induced landslides in Irpinia, southern Italy. In: Bromhead E, Dixon N and Ibsen ML (eds) Landslides in research, theory and practice, Proc. 8th International Symposium on Landslides, Cardiff, 3, p 1159–1164

  • Parise M (2001) Landslide mapping techniques and their use in the assessment of the landslide hazard. J Phys Chem of the Earth part C 26(9):697–703

    Google Scholar 

  • Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the January 17, 1994, Northridge, California, earthquake. Eng Geol 58(3–4):251–270

    Article  Google Scholar 

  • Parise M, Wasowski J (1999) Landslide activity maps for the evaluation of landslide hazard: three case studies from Southern Italy. Nat Hazards 20(2/3):159–183

    Article  Google Scholar 

  • Parise M, Federico A, Palladino G (2012) Historical evolution of multi-source mudslides. In: Eberhardt E, Froese C, Turner AK, Lerouil S (eds) Landslides and Engineered Slopes. Protecting Society through Improved Understanding. Proceedings 11th Int. Symp. Landslides, Banff (Canada), 1, p 401–407

  • Parise M, Vennari C, Vessia G, Basso A, Tromba G (2014) Relazione finale relative alle attività dell’Istituto di Ricerca per la Protezione Idrogeologica (IRPI) per la redazione di carte tematiche di franosità del Comune di Castelfranci (AV). (in italian, hardcopy only)

  • Patacca E, Scandone P (2007) Geology of the Southern Apennines. Boll Soc Geol Ital Spec Issue 7:75–119

    Google Scholar 

  • Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and Apenninic areas: kinematic relations since Late Tortonian times. Mem Soc Geol Ital 45:425–451

    Google Scholar 

  • Pellegrino A, Picarelli L, Urciuoli G (2003) Experiences of mudslides in Italy. In: Picarelli L (eds) Proc. Int. Workshop “Occurrence and mechanisms of flow-like landslides in natural slopes and earthfills”, p 191–206

  • Peluso (1998) Franosità attuale ed ereditata a Castelfranci. (hardcopy only, in Italian)

  • Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58:337–351

    Article  Google Scholar 

  • Sarma SK (1980) A simplified method for the earthquake resistant design of earth dams. Dams and Earthquakes. In: Proc. ICE Conference, London, p 155–160

  • Sibson R (1981) A brief description of natural neighbor interpolation. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 21–36

    Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides. Investigation and Mitigation. Transportation Research Board, Special Report 247, National Academy Press, Washington, p 129–177

  • Strenk PM, Wartman J (2011) Uncertainty in seismic slope deformation model predictions. Engr Geol 122(1–2):61–72

    Article  Google Scholar 

  • Tarquini S, Isola I, Favalli M, Mazzarini F, Bisson M, Pareschi MT, Boschi E (2007) TINITALY/01: a new Triangular Irregular Network of Italy. Ann Geophys-Italy 50(3):407–425

    Google Scholar 

  • TC4-ISSMFE (1999) Manual for zonation on seismic geotechnical hazards (revised version). Published by the Japanese Geotechnical Society

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL and Krizek RS (eds) Landslides-Analysis and control, chapter 2, National Academy of Sciences, Transportation Research Board Special Report 176, Whashington, p 11–33

  • Vessia G, Parise M, Tromba G (2013) A strategy to address the task of seismic micro-zoning in landslide-prone areas. Adv in Geosci 35:23–35

    Article  Google Scholar 

  • Wieczorek GF, Wison RC, Harp EL (1982) Experimental map of seismic slope stability, San Mateo County, California. US Geological Survey. Miscellaneous Investigations Series Map I-1257E, scale 1: 62500

  • Wieczorek GF, Wilson RC, Harp EL (1985) Map showing slope stability during earthquakes in San Mateo County, California. Miscellaneous Investigation Maps I-1257-E, USGS

  • Wilson RC, Keefer DK (1983) Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. B Seismol Soc Am 73(3):863–877

    Google Scholar 

  • Yegian MK, Marciano EA, Ghahraman VG (1991) Earthquake-induced permanent deformations: probabilistic approach. J Geotech Eng-ASCE 117:35–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vessia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vessia, G., Pisano, L., Tromba, G. et al. Seismically induced slope instability maps validated at an urban scale by site numerical simulations. Bull Eng Geol Environ 76, 457–476 (2017). https://doi.org/10.1007/s10064-016-0940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0940-0

Keywords

Navigation